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Mostow Rigidity and Hyperbolic 3-Manifolds

Abstract

Mostow rigidity is the remarkable theorem stating the uniqueness of hyperbolic struc-
tures on manifolds of dimension three or higher. Geometrically, this states that any homo-
topy equivalence between two hyperbolic manifolds can be uniquely deformed to an isom-
etry; informally, in this context, geometry equals topology. Hyperbolic manifolds form an
abundant and rich class of manifolds which provide further insight into other fields includ-
ing topology, algebra, and dynamics. This rigidity means that any geometric invariant is
also a topological invariant, and provides a powerful toolkit to understand these objects.
We highlight the two and three dimensional cases in detail and show why rigidity only
holds in dimensions three and higher. In dimension two, we exemplify the flexibility of hy-
perbolic structures encapsulated by a high dimensional moduli space that parameterizes
the various hyperbolic structures.

The two main proofs of Mostow rigidity hinge on extending an initial map between two
hyperbolic manifolds to the boundary of compactified hyperbolic space, the sphere at in-
finity. Mostow’s original proof utilizes the ergodicity of the geodesic flow to show that this
map is conformal, and therefore extends to a unique isometry on hyperbolic space, which
further descends to an isometry between the original manifolds. Gromov’s proof seeks to
answer the question of how to directly capture the topological invariance of the hyperbolic
volume. He defined a purely topological quantity which captures the complexity of the fun-
damental class of a manifold, and in the hyperbolic setting, computes the volume. The
second main realization in this proof is that the fundamental group of a hyperbolic mani-
fold algebraically encapsulates the geometric information of simplices of maximal volume,
which are rigid above dimension two.
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1
Introduction

In this work, we present a robust exposition of Mostow rigidity; this re-
markable result states that in dimensions at least three, hyperbolic structures are unique.
We will focus on the fundamental differences between dimensions two and three, and the
richness and abundance of hyperbolic 3-manifolds, through examples and computation. In
higher dimensions, little is known about the geometric landscape of manifolds. These re-
sults will extend to higher dimensions and here we highlight the more accessible geometry
present in dimension three, while the results are done in full generality. Throughout this
exposition, we hope to explain and motivate the failure of rigidity proofs in dimension two
and concretely demonstrate the flexibility of hyperbolic surfaces.

1.1 Mostow rigidity

Theorem 1.1.1 (Mostow rigidity). Let f : M → N be a homotopy equivalence between
two finite volume hyperbolic manifolds of dimension n ≥ 3. Then f is homotopic to an
isometry.

Geometry imposes an extremely detailed structure on a space, and with it comes at-
tached a rich set of tools and invariants. Mostow rigidity therefore provides a bridge be-
tween results and computations in geometry to topology and algebra.

Corollary 1.1.2. Any geometric invariant of a finite volume hyperbolic manifold M of di-
mension n ≥ 3 is a topological invariant. Examples include:

(i) the hyperbolic volume,

(ii) the length of the shortest geodesic, and
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(iii) the spectrum of the Laplacian, notably the smallest eigenvalue.

Another corollary states that for hyperbolic manifolds, the weaker notion of homotopy
equivalence implies the stronger notion of homeomorphism.

Corollary 1.1.3. If M and N are homotopy equivalent hyperbolic manifolds of dimension at
least three, they are homeomorphic.

This result completely falls apart in similar settings such as spherical geometry. Alge-
braically, the structure of a hyperbolic manifold is entirely encoded in its fundamental
group Γ, as such a manifold is always expressible as Hn/Γ, a fact which we will go over
in great detail in Chapter 2. This rigidity theorem allows us to understand algebraic facts
about Γ.

Corollary 1.1.4. The outer isomorphism group of Γ, namely Aut(Γ)/Inn(Γ), is finite. It is
canonically isomorphic to the isometries of M = Hn/Γ.

We can similarly deduce topological invariants from the algebra of Γ.

Corollary 1.1.5. Any algebraic invariant of Γ is a topological invariant of M = Hn/Γ.
In dimension three, Γ is a discrete subgroup of PSL(2,C), and taking the trace of every
element in Γ forms a number field which is an algebraic invariant associated to M as a
topological space.

1.1.1 Extending the map to the boundary sphere at infinity

The first step in both Mostow’s and Gromov’s proof of rigidity is to lift the initial map
f : M → N not only to the universal cover f̃ : Hn → Hn, but to get an induced map
on the sphere at infinity, which compactifies hyperbolic space radially. The main result
here will be that f̃ is a pseudo-isometry meaning it almost preserves distances. The images
of geodesics under f̃ will be quasi-geodesics. These quasi-geodesics lie within a bounded
distance of a unique hyperbolic geodesic; notably, they will match up at the endpoints at
infinity. This will mean that although a priori f̃ does not take geodesics to geodesics, it
will indeed associate a unique geodesic and induces a pairing on geodesics. Geodesics are
parameterized by pairs of distinct points on the sphere at infinity, so this will give us the
induced map on the boundary spheres. The key property of hyperbolic geometry that will
allow this is informally that the distance between two points p and q, both t away from
a geodesic, grows exponentially, according to cosh(t) compared to their projections onto
the geodesic. That is, the cost of traveling inefficiently in hyperbolic space grows exponen-
tially.

1.1.2 Mostow’s proof

In Chapter 3, we will detail Mostow’s original proof, which utilizes the theory of quasi-
conformal mappings and ergodicity. Mostow proved that the map on the boundary is
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quasi-conformal, meaning it only distorts the local geometry in a bounded manner. Heuris-
tically, infinitely small disks are mapped to ellipsoids of bounded eccentricity. This bound
is called the dilatation, and when it is 1, these maps are called conformal and have ex-
tra structure giving regularity results. The conformal geometry at the sphere at infinity
corresponds to the hyperbolic geometry in Hn, and a key insight of Mostow is that in di-
mensions at least three, the induced map on the sphere at infinity is quasi-conformal. The
proof finishes by using the ergodicity of the geodesic flow to improve the regularity of the
map on the spheres at infinity to show that it is actually conformal, and therefore corre-
sponds uniquely to an isometry on the interior to which we can homotopically deform f .

1.1.3 Gromov’s proof

In Chapter 4, we present Gromov’s proof, which immediately captures the relationship
between topology and geometry in the hyperbolic setting. Having already known the theo-
rem of Mostow rigidity, the first step of the Gromov proof answers the following question:
How can we compute the hyperbolic volume, (which we know is a topological invariant),
only using the topology? Gromov defines a purely topological quantity associated to the
hyperbolic manifold using its fundamental class, called the Gromov norm, which in the hy-
perbolic setting is proportional to its hyperbolic volume.1 Gromov’s proof then proceeds
by proving that the extended map on the boundary must preserve the maximal volume
simplices (which are regular ideal simplices) that are maximally symmetric with vertices
at infinity. This proof originally only worked in dimension three, where the maximal vol-
ume of tetrahedra was known to be maximally symmetric. It was extended in all higher
dimensions by Haagerup and Munkholm [HM81] and we detail this result in Appendix A.

The second main insight of the Gromov proof is that the fundamental group Γ contains
the geometric data of the regular ideal simplices. In dimension three, this corresponds to Γ
understanding exactly which 4-tuples of points in CP1 have cross ratio ζ6 = eπi/3. This is
geometrically characterized by the induced map on the sphere at infinity which gives rise
to a bijection on ideal regular simplices. In dimension two, all ideal triangles are the same,
so this information is vacuous, which shows the lack of rigidity.

1.2 Hyperbolic 3-manifolds

In this report, we will rigorously define the necessary geometric, analytic, and algebraic
structures used in hyperbolic geometry, with particular focus on the 2- and 3-dimensional
cases where hyperbolic manifolds are plentiful. We include detailed constructions, hyper-
bolic computations, and figures. Intuitively, hyperbolic manifolds are characterized by hav-
ing constant negative curvature. Locally, they look like a saddle curving along opposite
directions as one rotates around a point. In dimensions two and three, most manifolds are
hyperbolic, and in Chapter 2, we will give many motivating examples. We will detail the

1This should actually be called a semi-norm because it vanishes for many non-trivial topological objects
including spheres.
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various models of hyperbolic space in all dimensions and show how to translate between
them, utilizing the best features of each model to perform explicit computations.

Riemannian manifolds
(M, g) s.t. K ≡ −1

(G,X) − manifold
(PSL(2,C),Hn)

M = Hn/Γ
Kleinian group Γ

Polyhedra
gluing

Space forms

Local isometry to Hn

Developing map

Dirichlet domain

Gluing criteria

Figure 1.1: The models of complete hyperbolic manifolds and the constructions to translate among them.

There are three modern, equivalent viewpoints of hyperbolic manifolds, each with its
own merits. To work fluently with this geometry, it is critical to be able to go back and
forth between them. These three models construct M as a complete finite volume hyper-
bolic manifold:

(i) M = Hn/Γ, a quotient of hyperbolic space by a discrete subgroup Γ ⊂ Isom(Hn) of
the isometries of hyperbolic space. Such a Γ is called Kleinian.

(ii) M is given a (G,X)-structure for (G,X) = (Isom(Hn),Hn). This means that lo-
cally we have charts on M that are modeled as Hn with transition functions that are
isometries.

(iii) M is constructed by gluing hyperbolic polyhedra along pairwise isometric identifica-
tions of their boundary sides.

Translating among these models requires a few constructions and theorems that we flesh
out in Chapter 2. The primary and most versatile definition is (i) which is detailed in
Chapter 2 Section 2.3 after we define the requisite background on hyperbolic space and
the isometry group. Starting from the local picture of M as a (G,X) manifold, we will de-
fine the developing map in Chapter 2 Section 2.4 which realizes M as Hn/Γ. The idea here
is to take the local picture of M as Hn given by the (G,X)-structure and unfold its uni-
versal cover along the isometries in Hn. To realize M = Hn/Γ as the gluing of hyperbolic
polyhedra, we must find a fundamental domain that models a polyhedron in Hn such that
its faces can be glued together along isometries to create M . We define this construction
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in Chapter 2 Section 2.6.1, which is called a Dirichlet domain and can be made by tak-
ing a basepoint and finding its orbit under Γ in Hn and the fundamental domain is given
as the points closest to this initial basepoint; the hyperbolic Voronoi region. Lastly, given
a topological space expressed as a polyhedra gluing, to check that the topological space
has a manifold structure, one must verify that it has local charts around the higher codi-
mension faces to satisfy the local (G,X)-conditions. This is given by the Poincaré polyhe-
dra theorem 2.6.4. In particular, in dimension three, the gluing conditions are extremely
easy to verify and are equivalent to the vanishing of the Euler characteristic as detailed in
Proposition 2.6.2.

There is a final definition coming from Riemannian geometry, and we will briefly estab-
lish its equivalence to the others in Chapter 2 Section 2.7. In the Riemannian setting, a
hyperbolic manifold is given by a Riemannian metric (M, g) such that g has constant sec-
tional curvature −1. We will show that when this is complete, its universal cover is Hn,
which shows this is equivalent to Definition (i) above. It can also be shown to be locally
isometric to Hn showing equivalence to Definition (iii) above. Because there are not gen-
erally methods to produce Riemannian manifolds with constant sectional curvature, in the
Riemannian setting, such structures are quite rare, so this perspective may be regarded as
the least natural. See Figure 1.1 to diagram the constructions used to go among the mod-
els.
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2
Hyperbolic geometry fundamentals and

examples

Hyperbolic manifolds are characterized by constant negative sectional curvature. This
local description means that any such manifold can be covered by charts diffeomorphic to
Rn that carry metrics of constant negative curvature, motivating the definition of the hy-
perbolic metric on either the open ball or upper half-space Hn. It is a remarkable fact that
this local description can be made global using the developing map, giving rise to the clas-
sification of complete constant sectional curvature manifolds, also called space forms. This
theorem states that any complete manifold of constant sectional curvature is a quotient
of either the sphere Sn, flat Euclidean space Rn, or the hyperbolic space Hn. Therefore,
a global description of hyperbolic manifolds is given as a quotient M = Hn/Γ of the hy-
perbolic plane by a discrete subgroup of its isometries. Such a group is called a Kleinian
group, and it characterizes the entire geometry of a hyperbolic manifold. This group is
naturally identified with the fundamental group π1(M). Utilizing the universal covering
map π : Hn → M of a hyperbolic manifold, we can understand the original manifold by
examining its fundamental group; Mostow rigidity says that this is sufficient to uniquely
determine the manifold in dimension at least three. Hyperbolic manifolds can be explicitly
constructed using hyperbolic polyhedra, which act as puzzle pieces. When glued together
properly, they assemble to form recognizable spaces and can geometrize many spaces that
a priori are described only topologically.

Hyperbolic manifolds play the most important role in understanding the geometry of
two- and three-dimensional manifolds, and likely in higher dimensions. In these low di-
mensional cases, there are geometrization theorems that state that all manifolds have nat-
ural geometric structures. In dimension two, this is given by the Uniformization theorem
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which states that any Riemann surface can be endowed with a metric of constant curva-
ture, either flat, positive (spheres), or hyperbolic. All but finitely many of these will be
hyperbolic. We detail this result in Section 2.9. In three dimensions, there are eight model
geometries – the brilliant insight that is Thurston’s geometrization conjecture, proven by
Perelman using Ricci flow. This theorem states that any 3-manifold can be cut into pieces
each of which has a geometric structure that aligns with one of just eight different types.
Similarly to the dimension two case, the hyperbolic case occupies most of these manifolds.
The idea that most 3-manifolds are hyperbolic can be made rigorous and demonstrates why
this is the most important geometry to study (see Theorem 2.10.9). Little is known on the
general structure of 4-manifolds or higher, although hyperbolic manifolds of all dimensions
exist and are plentiful, and the geometric intuition and examples shown in dimension three
here extend to higher dimensional cases. Hyperbolic manifolds further lie at the intersec-
tion of many fields of math and give insight into results in topology, algebra, and analysis.
Their study is intimately related to physics, and the theory of special relativity can be suc-
cinctly expressed using the hyperbolic Minkowski metric.

In this chapter, we will give examples and pictures of hyperbolic manifolds of dimen-
sion two and three and explicitly demonstrate the fundamental differences between these
two spaces of manifolds, and show why rigidity cannot hold in dimension two and give
intuition as to where this comes from in dimension three. We will compute the area and
volume of hyperbolic polyhedra in dimensions two and three and use them to compute
volumes of various hyperbolic manifolds. Additionally, we will show the vastness of hyper-
bolic 3-manifolds and explain the geometric topology which gives a geometric structure on
the space of all finite volume hyperbolic 3-manifolds and orders them based on volume.

The proof of Mostow rigidity requires some algebraic topology as well, and in an effort
to produce a close to self-contained document, we detail the important theorems about
hyperbolic manifolds in the topological setting. Because Hn is contractible, any hyper-
bolic manifold is an Eilenberg-Maclane space K(π1(M), 1), meaning that higher homotopy
groups vanish. These spaces are the building blocks of topology. Mostow rigidity therefore
provides a powerful bridge connecting geometry and topology; any geometric invariant is
also a topological invariant, such as hyperbolic volume. In Section 2.12, we provide the
necessary results to forge ahead with Mostow rigidity and more details of their proofs are
given in Appendix B.

2.1 Models of hyperbolic space

Definition 2.1.1 (Upper half-space model). The primary model of hyperbolic space is the
upper half-space, denoted Hn. The space Hn = {(x1, . . . , xn) ∈ Rn : xn > 0} is endowed
with the metric gij = δij

(xn)2 . Since this norm is always positive, as the point 0 is not in the
upper half-space, this metric is conformal to the Euclidean metric (see below conformal
metrics 2.1.9).
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In the upper half-space model, we have a natural boundary where xn = 0. However, it
is often helpful to also consider a compactification of this boundary at infinity. To do that,
we can conformally map the upper half-space into the interior of a disk.
Definition 2.1.2 (Open ball model). The space Bn = {(x1, . . . , xn) ∈ Rn : ‖x‖ < 1} is
the open unit ball, and we give it the metric gij = 4

(1−‖x‖2)2 δij, a conformal scaling of the
Euclidean metric.

Another natural way to realize hyperbolic space is to ask if it can be isometrically em-
bedded as a hypersurface. To achieve this, we take the so-called sphere of radius i in Rn,1,
the (n+ 1)-dimensional space endowed with a quadratic form of signature (n, 1).
Definition 2.1.3 (Minkowski model). We seek to find a well-curved copy of Rn sitting in-
side Rn+1 such that the induced metric is the hyperbolic metric. To do this, let x be a co-
ordinate on Rn and we add a variable t. We define

Hn = {(x, t) ∈ Rn × R : |x|2 − t2 = −1, t > 0}

to be the 1-sheeted hyperboloid, or the so-called sphere of radius i for a quadratic form of
signature (n, 1) called the Minkowski metric, which we may denote 〈−,−〉n,1.

The condition of t > 0 takes a single sheet of a real two-sheeted hyperboloid. Rearrang-
ing the equation, we can see that |x|2 = t2 − 1, which can only be solved when t ≥ 1.
Therefore, we can take the plane t = 1, and this plane meets the Minkowski model tan-
gentially at the point where x = 0 and t = 1. The entire Minkowski plane lies inside the
light cone where |x|2 = t2, which when intersected with the plane at t = 1 bounds a unit
disk centered at x = 0. We can project the Minkowski model into this disk by taking the
unique line through any point and the origin, and taking its intersection with the above
disk.
Definition 2.1.4 (Klein model). We can projectivize the Minkowski model and get that Hn

will lie in RPn to achieve the Klein model. Under this map, Hn will become the unit ball
in the projective coordinates [x : 1]. We may denote this model as Kn.

2.1.1 Geodesics

Geodesics are the geometric notion of a straight line for Riemannian manifolds. Given a
Riemannian manifold (M, g), the metric is given as g which is a family of smoothly vary-
ing inner products of tangent vectors at every point in M . Given a smooth curve γ : [0, 1] →
M , we can define the energy functional as∫ 1

0
|γ̇(t)|2 dt

where we measure the length using g. Motivated by physics, geodesics are critical points of
the energy functional, or equivalently, solve the Euler-Lagrange type differential equation:

γ̈k + Γk
ij γ̇

iγ̇j = 0 (2.1)
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where the repeated indices in a product mean that we sum over all components i and j,
and this is true for all k. The symbols Γk

ij are the Christoffel symbols of g defined in local
coordinates1 as

Γk
ij = 1

2
gk`(∂ig`j + ∂jgi` − ∂`gij). (2.2)

This equation is a second-order ordinary differential equation and has a short-time unique
solution given by the Picard-Lindelöf theorem. Geodesics have constant speed, so to con-
sider the space of geodesics, we will normalize this speed to 1 to avoid multiple geodesics
tracing out the same path, only differing in velocity, (constructed below in Remark 2.1.8
after the characterization of hyperbolic geodesics).

To get a handle on hyperbolic space, we will want to have familiarity with what the ge-
ometry looks like, so we must understand the geodesics and the angles among them. The
various models have different advantages in computing and analyzing geodesics. In Hn and
Bn, the angles between geodesics will agree with the Euclidean angle between their tangent
lines at the point of intersection. In Hn, the geodesics can be computed with linear alge-
bra. In the Klein model, the geodesics are straight lines, but the angles and speeds along
them vary and disagree with the Euclidean parameterizations. Table 2.1 below details the
geodesics in each model:

Model Geodesics Properties
Hn Vertical lines and semicircles orthog-

onal to {xn = 0} with centers on
the plane {xn = 0}

Angles agree with Euclidean angles,
boundary is {xn = 0} ∪ ∞

Bn Circular arcs that meet the bound-
ary sphere at right angles

Angles agree with Euclidean angles,
compactified Bn is Euclidean closure

Hn Intersections of Hn with planes
through the origin of Rn,1

Geodesics are parameterized by
hyperbolic trigonometric functions
cosh and sinh

Kn Straight lines Convexity is the same as Euclidean
convexity, but angles do not agree

Table 2.1: Geodesics in each model and properties.

In both the upper half-space model and the Poinaré ball model, the geodesics are given
as arcs of a circle that are perpendicular to the boundary. Geodesics in the Minkowski and
Klein model are given as intersections with two dimensional linear subspaces in Rn,1. In
the upper half-space and Poincaré disk models, the geodesics do not align with straight
lines in the flat setting. The benefit is that the hyperbolic angles in these models align

1A manifold has local coordinates given by a smooth atlas. An atlas is a collection of open subsets {Ui}
of M that cover M , meaning

⋃
i Ui = M , such that each open subset is diffeomorphic to an open subset of

via maps ϕi : Ui → Vi ⊂ Rn. On the overlaps Ui ∩ Uj , the map ϕi ◦ ϕ−1
j is a smooth function from Vj → Vi

in the standard sense. The Vi have standard coordinates in Rn which we say are local coordinates on M .
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Figure 2.1: Geodesics in H.

with the flat angles. In the Klein model, the geodesics will be straight lines, but the hy-
perbolic angles will be distorted and the length of the curve does not agree with the Eu-
clidean length.

These models come in natural pairs as can be seen in Table 2.1. The upper half-space
and Poincaré ball are conformally related to the standard Euclidean, so analysis on one
carries over to the other (Subsection 2.1.2 will detail more discussion on conformal met-
rics). The relationship between Hn and Kn is given by projectivization, which defines the
structure on Kn to be induced by this map as an isometry that is also an isomorphism.
Therefore, we can study just upper half-space Hn and Hn to understand all geodesics. Fur-
thermore, the rotational symmetries of these spaces – rotation about the xn-axis in Hn,
and rotation about the t-axis in Hn – reduces all the analysis to studying simply the two-
dimensional case.

Example 2.1.5 (Upper-half plane geodesics). Let H = {z ∈ C : Im(z) > 0} with metric
gij = 1

y2 δij. One model geodesic is the imaginary axis. The group of PSL(2,R) can carry
this geodesic to any vertical line or semicircle perpendicular to the real line, and below we
will show that this group in fact acts by isometries. Any two points are either with the
same real part and can be connected by a vertical line, or are on the semicircle perpendic-
ular to the real line centered at the unique real number equidistant from both points. See
Figure 2.1. Therefore, any two points are connected by the image of this geodesic under
some isometry, and since geodesics between two points are unique, this demonstrates all
of them. Notably, H is geodesically complete and from the Hopf-Rinow theorem this tells
us that the exponential map is defined everywhere (see Section 2.7). There are two ways
to show that the vertical imaginary line is a geodesic. Firstly, we can argue that geodesics
are length minimizing curves. Indeed we can compute the length γ(t) : [a, b] → H maps
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γ : t 7→ (0, t). Let ` be any piecewise C1 arc adjoining γ(a) to γ(b).

L(`) =
∫ b

a

∣∣∣d`
dt

∣∣∣dt
=
∫ b

a

√√√√(dx
dt

)2

+
(
dy

dt

)2
dt

y

≥
∫ b

a

∣∣∣dy
dt

∣∣∣dt
y

≥
∫ b

a

dy

y

= L(γ)

(2.3)

thereby demonstrating that γ is a geodesic.
The geodesics can also be directly computed using the geodesic differential equation

from above
γ̈k + Γk

ij γ̇
iγ̇j = 0 (2.4)

for γ̇ representing dγ
dt

, the tangent vector to γ at time t. The Christoffel symbols for H2 are

Γx
ij =

(
0 − 1

y

− 1
y

0

)
, Γy

ij =
( 1

y
0

0 − 1
y

)
(2.5)

so the geodesic equations 2.4 using the Christoffel symbols 2.5 becomes

ẍ− 2
y
ẋẏ = 0, ÿ + 1

y
ẋ2 − 1

y
ẏ2 = 0 (2.6)

to which we recognize that the imaginary axis of x = 0 solves the first equation and re-
duces the second one to yÿ = ẏ2 solved by y = et.

To demonstrate that the isometry group is PSL(2,R), the action is given by

A =
(
a b
c d

)
∈ SL(2,R)

on z = x + iy by the linear fractional transformation Az = az + b

cz + d
which is invariant

under the action of ±I. Let x′, y′ be the new coordinates under the action of A on x, y.
Explicitly, this is written out as

ax+ b+ ayi

cx+ d+ cyi

Killing the imaginary part of the denominator gives this as:

(ad− bc)y
(cx+ d)2 + (cy)2 > 0

12



which is positive since detA = 1. This whole part is:

ac(x2 + y2) + (ad+ bc)x+ bd

(cx+ d)2 + (cy)2 + y

(cx+ d)2 + (cy)2 i

Differentiating both of these with respect to t and plugging into:

ẋ′2 + ẏ′2

y′(t)2

This gives the expression of the metric in the new coordinates as

dx′2 = (x′(t) (c2x(t)2 − c2y(t)2 + 2cdx(t) + d2) + 2cy(t)y′(t)(cx(t) + d))2

(c2x(t)2 + c2y(t)2 + 2cdx(t) + d2)4

and
dy′2 = (c2y(t)2y′(t) + 2cy(t)x′(t)(cx(t) + d) − y′(t)(cx(t) + d)2)2

(c2x(t)2 + c2y(t)2 + 2cdx(t) + d2)4 .

Simplifying this gives
ẋ′2 + ẏ′2

y′(t)2 = ẋ2 + ẏ2

y(t)2 ,

so the action of A gives an isometry.
The theory of linear fractional transformations can be used to show that the open unit

circle C ⊃ ∆ = {z : |z| < 1} carries a hyperbolic metric given by the pullback of the
hyperbolic metric on the upper half plane along the linear fractional transformation carry-

ing the disk to the upper half plane such as
(

1 −i
1 i

)
. This discussion of the geometry of

hyperbolic space will be useful in the uniformization theorem.
This extends to higher dimensions and gives a conformal isometry between Hn → Bn,

so we know it must preserve angles and take circles to circles, so the above result further
proves that the geodesics in Bn are circular arcs orthogonal to the boundary as claimed in
Table 2.1. An explicit conformal isometry from Hn → Bn is given by mapping the south
pole s = (0, . . . , 0,−1) to infinity using the map p : Bn → Hn defined by p : x 7→ s+ 2(x−s)

‖x−s‖2 .

Example 2.1.6 (Geodesics in Hn). Let x ∈ Hn be a point in the Minkowski model and
let y ∈ TxHn be a point such that 〈y, y〉n,1 = 1 where 〈−,−〉n,1 is the Minkowski metric of
signature (n, 1) defined as |x|2 −t2 above. The geodesic starting from x with initial velocity
y is given as

γ(t) = cosh(t)x+ sinh(t) y (2.7)
notably, this is the intersection of Hn with a linear plane of dimension 2 going through the
origin.

To see this result, let W be the plane generated by x and y. We define γ to be the max-
imally extended geodesic starting at x with velocity y. Let φ ∈ O(n, 1) be an orthogonal
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matrix (with respect to the Minkowski inner product) such that φ acts on W by the iden-
tity and acts on the orthogonal complement to W by negation. Therefore, φ(x) = x and
dxφ(y) = y implying that γ is invariant under φ and therefore contained in W ∩ Hn. We
now realize that the mapping defined above in Equation 2.7 is of unit length and parame-
terizes W ∩ Hn establishing the desired result.

Notably, projecting the linear planes to the Klein model Kn will produce straight lines
as this will be the intersection of a plane through the origin, and the plane {t = 1} (re-
stricted to the unit disk), and the intersection of two planes will be a line. This works be-
cause the projection map from Hn → Kn is a global isometry by construction.
Example 2.1.7. The distance from a point z = x + iy to the imaginary axis in H can be
computed using the inverse of the hyperbolic sine function as sinh−1(|x|/y). We need the
unique geodesic that passes through the imaginary axis at a perpendicular angle and goes
through the point x + iy. This means that it must pass through (|x|2 + |y|2)i on the imagi-
nary axis as the center of the circle must be the origin. We can use the isometry(

r 0
0 r−1

)

for r > 0 real which acts on z by rz+0
0z+r−1 = r2z. This takes the imaginary axis to itself, so

therefore we can reduce this problem by taking this isometry and assume that |x|2 + |y|2 =
1, so we are finding the distance to the point i using the above observation. We reflect to
assume that x > 0.

We take the curve exp(iθ) which is the geodesic that passes through both z and i. We
need to take θ going from tan−1(y/x) to π

2 . The parameterization is x = cos(θ) and y =
sin(θ), so the arc-length form is 1

y
. In terms of θ, we can compute y = sin θ. Therefore,

this length is computed as ∫ π
2

tan−1(y/x)

1
sin θ

dθ.

We can compute
∫

csc(θ) dθ = − log | csc(θ) + cot(θ)| + C. At θ = π/2, this is − log(1) = 0.
Therefore, this length is

log | csc(tan−1(y/x)) + cot(tan−1(y/x))| = log |(1 + x)/y|.

We have an exponential definition of the hyperbolic trigonometric sine function as

sinh(x) = ex − e−x

2
=⇒ sinh−1(x) = log |x+

√
x2 + 1|.

Recognizing this term above, we can rearrange the previous computation to a more com-
pact form as

log |(1 + x)/y| = log |1/y + x/y|

= log |x/y +
√

1/y2|

14



= log |x/y +
√
x2 + y2

y2 |

= log |x/y +
√

(x/y)2 + 1|
= sinh−1(x/y)

demonstrating the desired result.

Remark 2.1.8 (Space of geodesics). Most easily seen in Bn and Kn, any geodesic can be
infinitely extended to meet two distinct points on the boundary sphere at infinity Sn−1

∞ .
Therefore, by normalizing to unit speed, we can topologize the space of oriented geodesics
as Sn−1

∞ ×Sn−1
∞ \ ∆ where ∆ is the diagonal subset ∆ = {(x, x) ∈ Sn−1

∞ ×Sn−1
∞ }. We impose

that this is the space of oriented geodesics by imposing the direction of the geodesic given
by (x, y) ∈ Sn−1

∞ × Sn−1
∞ as traveling from x towards y at unit speed.

2.1.2 Conformal metrics

Definition 2.1.9 (Conformal metrics). Let gij be a metric on Rn (or the local presentation
of a metric on a manifold). A metric h is said to be conformal to g if h = efg is a positive
rescaling of g at every point.

Proposition 2.1.10 (Curvature of conformal metrics). Let gij = F−2δij for a nowhere van-
ishing function F on some subset Ω ⊂ Rn be a conformal scaling of the Euclidean metric.
For f = logF , the sectional curvature Kij is given by

Kij = (∂2
i f + ∂2

j f + (∂if)2 + (∂jf)2 −
∑

`

(∂`f)2)F 2. (2.8)

Proof. The inverse metric is given by gij = F 2δij which we use to compute the Christoffel
symbols defined in Equation 2.2. In the case of the conformal metric in, the computation
is given as

Γk
ij = 1

2
F 2(∂iF

−2δ`j + ∂jF
−2δi` − ∂`F

−2δij) = −∂ifδjk − ∂jfδik + ∂kfδij (2.9)

using the following expression of derivatives of the metric

∂kgij = ∂kF
2δij = − 2

F 3∂kF = − 2
F 2

∂kF

F
= − 2

F 2∂k(logF ) = − 2
F 2∂kf.

so the prefactor term 1
2F

2 cancels leaving only derivatives of f thereby proving the last
equality in Equation 2.9. Notably, since each term has a δij in it, if all three indices are
distinct, this kills each term and the Christoffel symbol vanishes.

The expression of the Riemann curvature defined as

Ri
jk` = ∂kΓi

`j − ∂`Γi
kj + Γi

kpΓp
`j − Γi

`pΓp
kj
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can now be simplified using the standard symmetries and the previous observation about
the vanishing of the Christoffel symbols. If all four indices are distinct, the previous obser-
vation would show that the second half vanishes leaving just the first terms. Furthermore,
these terms also vanish since all the derivatives of the Christoffel symbols with distinct
indices vanish as well as seen by their formula in Equation 2.9. Therefore, at least two in-
dices must be the same, so we can compute all the non-zero Christoffel symbols

Γi
ij = Γi

ji = −∂if, Γj
ii = ∂jf, Γi

ii = −∂if (2.10)

and the term of the Riemann tensor we will need is

Rijij = Rk
ijigjk = F−2Rj

iji (2.11)

to which Equation 2.10 can be applied to compute

F 2Rijij = ∂jΓj
ii − ∂iΓj

ji + Γk
iiΓ

j
jk − Γk

jiΓ
j
ik = ∂2

j f + ∂2
i f + (∂if)2 + (∂jf)2 −

∑
k

(∂kf)2. (2.12)

This can now compute directly the sectional curvature Kij = Rijij

giigjj−g2
ij

which in this setting
is

Kij = F 4Rijij = F 2(∂2
j f + ∂2

i f + (∂if)2 + (∂jf)2 −
∑

k

(∂kf)2) (2.13)

which is Equation 2.8 as desired.

We can now specialize to where F is defined as in definitions 2.1.1 and 2.1.2 to compute
that indeed the sectional curvature of the hyperbolic models is −1. For the upper half-
space, this reduces considerably since F = xn so most of its derivatives are 0. In this case,
we can use Equation 2.13 to compute Kij noting that any derivative must be n to not van-
ish, so if neither i nor j are n, then this reduces to the single term in the sum where k = n
and we get

Kij = (xn)2(−∂n log xn)2 = −(xn)2 1
(xn)2 = −1. (2.14)

Now suppose that i = n and j 6= n (and by symmetry of the Riemann curvature tensor,
this is also when i 6= n and j = n), we compute

Knj = (xn)2(−∂2
n log xn +(∂n log xn)2 −(∂n log xn)2) = (xn)2

(
1

(xn)2 + 1
(xn)2 − 1

(xn)2

)
= −1.

(2.15)
Finally, for i = j = n the computation similarly gives

Knn = (xn)2(2 ∂2
n log xn + 2 (∂n log xn)) = (xn)2

(
− 2

(xn)2 + 2
(xn)2 − 1

(xn)2

)
= −1. (2.16)
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Equation 2.13 similarly verifies that Kij = 1 for the ball metric in the ball model from
definition 2.1.2, however the conformal factor of F = 2(1 − ‖x‖2)2 has derivatives in each
variable, so it becomes much more complex. Instead, this can be verified by exhibiting an
isometry between these spaces. We gave the example of this map by sending the south
pole s = (0, . . . , 0,−1) to infinity using the map p : Bn → Hn defined by p : x 7→ s+ 2(x−s)

‖x−s‖2 .

2.2 Completeness of hyperbolic space

The most important feature of the hyperbolic metric is that it is complete. Completeness
has a few different definitions, but an important consequence of this is that any two points
can be joined by a unique geodesic of minimal length.

Definition 2.2.1 (Geodesic completeness). A Riemannian manifolds (M, g) is said to be
geodesically complete if every geodesic can be extended infinitely.

As stated above, geodesics always have a short time existence. However, these short-
time solutions do not always extend to infinite time solutions. Consider the Euclidean
plane with the origin removed. We can start a path along the x-axis from the point (1, 0)
along the geodesic, however, it’s length can never exceed one because the origin is not in
this space. This is an example of a manifold that is not geodesically complete, nor is it
metrically complete.2 Notably, the distance between (1, 0) and (−1, 0) is two as defined as
the infimum of lengths of all curves between those points, but this is never achieved by a
geodesic.

Theorem 2.2.2 (Hopf-Rinow). A Riemannian manifold is metrically complete if and only
if it is geodesically complete.

For a proof of this theorem, we direct the reader to do Carmo [Car92] or other introduc-
tory textbooks on Riemannian geometry. Knowing this, we can now say a space is com-
plete unambiguously. In Remark 2.1.8, we used the geometry of the geodesics in either Bn

or Kn to note that any geodesic can be extended to infinity. In Kn, it is further seen that
any two points are connected by a unique geodesic, namely by using the Euclidean straight
line. We formalize this intuition in the following proposition.

Proposition 2.2.3. Hn is complete.

Proof. Hn is seen to be complete by studying its geodesics and verifying that any two
points can be connected by a unique geodesic. To examine the geodesics, it is sufficient
to study the isometries of the upper-half of Rn that do not involve xn as these will also
be isometries if Hn. In the Rn−1 plane excluding xn, the isometries agree, so we can study
only the isometries in the plane spanned by x1 and xn. This is now the standard upper-
half plane which is {z ∈ C : Im(z) > 0} with metric gij = 1

y2 δij. Any two points in Hn

2A metric space X is (metrically) complete if we every Cauchy sequence has a limit. A Cauchy se-
quence is a sequence of points xn ∈ X such that for any ε > 0 there exists an N such that for all xi, xj

where i, j > N , the distance d(xi, xj) < ε.
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can be considered in H by taking the plane defined by them subject to the constraint that
its projection along xn is a line, that is perpendicular to the xn = 0 plane. This justifies
the reduction to studying just the upper-half plane H as detailed in Example 2.1.5. We fi-
nally appeal to the Hopf-Rinow theorem that says that completeness is equivalent to any
geodesic having infinite time extension, which is the case as geometrically exemplified in
Example 2.1.5 and Figure 2.1.

2.3 Isometries of Hn

Isometries are maps that preserve distances, i.e. f : X → Y is an isometry if

∀x, x′ ∈ X, dX(x, x′) = dY (f(x), f(x′)).

Notably, isometries take geodesics to geodesics. The isometries of hyperbolic space can be
represented as matrix groups, in particular, they are Lie groups3, and their structure can
be categorized by properties of their matrix representatives. We classify only the orienta-
tion preserving isometries as any orientation reversing isometry can be computed in the
upper-half model by precomposition with the simple map x1 7→ −x1. In three dimensions,
we consider the sphere at infinity to be the Riemann sphere C ∪ {∞}. The hyperbolic ge-
ometry of H3 on the interior extends to conformal geometry on the boundary S2. This is
a key realization used in the Mostow proof to find conformal maps on the boundary that
correspond to isometries in the interior. Therefore, the isometry group is characterized by
PSL(2,C). This more generally extends and can be understood because of the complete-
ness of hyperbolic space. Any isometry can be characterized by how it maps geodesics to
geodesics, which correspond to pairs of points on the sphere at infinity. Understanding
isometries corresponds to understanding conformal maps on the boundary space. We make
this rigorous in the following theorem.

Theorem 2.3.1. Isometries of Hn for n ≥ 2 correspond with conformal automorphisms of
the boundary sphere at infinity Sn−1

∞ . Notably, we have that Isom(H2) = PSL(2,R) and
Isom(H3) = PSL(2,C).

In fact, we showed the identification Isom(H2) = PSL(2,R) in the computations of the
geodesics of the upper half-plane in Example 2.1.5.

Proof. We examine the geometry of isometries on Hn and how the extend to the bound-
ary. Firstly, a reflection through any hyperplane Hn−1 extends to a a reflection of Sn−1

∞
about a “circumference” sphere Sn−2 which is a conformal map. The converse of the above
construction follows as well. Take any given Sn−2 and it bounds a hyperbolic hyperplane
Hn−1 and the reflection through this sphere can be extended on the interior to a hyper-
bolic reflection about Hn−1.

3Lie groups are smooth manifolds endowed with a group structure where the multiplication and inver-
sion maps are smooth.
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This completes the proof as both the isometry group of Hn and the conformal automor-
phisms of sphere are generated by their respective reflections. Therefore, any isometry ex-
tends to a conformal automorphism of the boundary, and conversely, a conformal automor-
phism of the sphere at infinity can be filled in to an isometry.

To verify that this is a one-to-one correspondence, consider an isometry that induces the
identity automorphism on the boundary sphere at infinity. By characterizing all geodesics
by their unique endpoints, we realize that this leaves every geodesic invariant. It must
therefore be the identity.

In two and three dimensions, the eigenvalues of matrices in PSL(2,R) and PSL(2,C)
can be used to understand the different types of isometries. There are four categories of
orientation preserving isometries that are easiest to describe across the various models of
hyperbolic space. The fourth description is unique to PSL(2,C), but the first three work
in either two or three dimensions.

(i) Elliptic: An isometry is called elliptic if it can be described in the Poincaré disk model
as pure rotations across a geodesic which is a (Euclidean) straight line through the
origin. These fix two points in the sphere at infinity. The trace of the matrix repre-
senting an elliptic isometry is real and contained in (−2, 2).

(ii) Parabolic: An isometry is called parabolic if it can be expressed in the upper half-
space model as a translation. These isometries fix only a single point in the sphere at
infinity, namely ∞ in the above description. The trace of the matrix representing a
parabolic isometry is real and either ±2.

(iii) Hyperbolic: An isometry is called hyperbolic if in the ball model, they can be re-
alized as “translation” in the direction of a diameter. Pick a (Euclidean) straight
geodesic through the origin and a hyperbolic isometry preserves the endpoints and
shifts points towards the one endpoint of this diameter. The trace of the matrix rep-
resenting a hyperbolic isometry is real and is greater than 2 in norm.

(iv) Loxodromic: An isometry is called loxodromic if it is hyperbolic and also rotates
around the the diameter geodesic described above. The trace of the matrix represent-
ing a loxodromic isometry is not real.

2.3.1 K − A−N subgroups and decomposition

For H2 and H3, we have explicit representations of the isometry groups of the hyperbolic
plane and hyperbolic space as PSL(2,R) and PSL(2,C) respectively. We can analyze these
as Lie groups and give some important properties that we will use in the proofs of Mostow
rigidity. The main result we will need is the property of unimodularity, which means there
exists a left- and right-invariant Haar measure. In both cases, we can express the homo-
geneous space of Hn for n = 2, 3 as SL(2,R)/SO(2) or SL(2,C)/(2) and the difference
between these is really only the underlying field of R compared to C, so they share a lot of
desirable properties. Let G = PSL(2, k) for k = R or k = C for n = 2 or n = 3 respectively.

19



Notably, they are even of the same dimension when considered over their respective fields
R and C. We call the subgroups K = SO(2) or K = SU(2) for n = 2 or 3 respectively. We
also define subgroups

A =
{
ar =

(
er/2 0
0 e−r/2

)}
, A ⊃ A+ = {ar : r ≥ 0}

which make sense in both n = 2 and n = 3. The last subgroup is given as

N =
{
nt =

(
1 t
0 1

)}

for t ∈ R for n = 2 and t ∈ C for n = 3. This gives a decomposition via the spectral
theorem that G = KA+K called the Cartan decomposition. This decomposition already
tells us that the Haar measure is left- and right-invariant because this presentation of G
is symmetric in this decomposition; K acts both on the left and the right. In fact, this is
true in higher dimensions as generalized in the following theorem.

Theorem 2.3.2. The isometry group of Hn is unimodular.

We can compute what this Haar measure is for G. Because K does not change the ra-
dius and can act on the left and the right, we know that the Haar measure can be ex-
pressed simply as a function of the radius r for any element kark

′ ∈ G.
First let us work for n = 2 so G = PSL(2,R) and H2 = G/K. Let a be the Lie algebra

of A, and s be the Lie algebra of K = SO(2). A has natural coordinate r. We can take the
exponential map in this decomposition and fix some r to get a map

s ⊕ a ⊕ s → G, θ ⊕ α⊕ θ′ 7→ exp(θ) · ar exp(α) · exp(θ′)

which induces a linear map on the tangent space of G at ar, which can be left-multiplied
by a−1

r to be g the tangent space at the identity of G (its Lie algebra) to get a map

θ ⊕ α⊕ θ′ 7→ a−1
r exp(θ) · ar exp(α) · exp(θ′).

We can now act by the adjoint action of ar on θ which will show that these span g.
To finish computing the Haar measure, we can now choose a basis and compute the ra-

dial dependence of the Haar measure in that basis. We choose a standard basis

h =
(

1 0
0 −1

)
∈ a, θ =

(
0 1

−1 0

)
∈ s, σ =

(
1 0
0 1

)
.

Taking the adjoint action of a−1
r on θ gives

a−1
r θar =

(
0 e−r

−er 0

)
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and this is expressed in the basis as xσ + yθ where x and y solve the system of equations

x+ y = e−r and x− y = −e−r

which is solved by x = − sinh(r) and y = cosh(r). Therefore, the map from s ⊕ a ⊕ s to
TarG

∼= g is given by

aθ ⊕ bh⊕ cθ 7→ −a sinh(r) · σ ⊕ bh⊕ (c+ a cos(r))θ

or more generally, the map from s ⊕ a ⊕ s → R〈σ〉 ⊕ a ⊕ s is given by

(a, b, c) 7→ (−a sinh(r), b, c+ a cosh(r).

This computes the Haar measure on G as d(kark
′) = | sinh(r)|dkdrdk′.

To extend the above to PSL(2,C) does not require much extra work. We must replace
s to be the Lie algebra of SU(2) which has more components than SO(2). This is decom-
posed as

s = R〈θ〉 ⊕ R〈iσ〉 ⊕ R〈ih〉

which are the Pauli matrices (up to multiplication by i according to convention). What
makes this so similar to the above computation is that ar acts as above on the first sum-
mand and trivially on the third summand above. Therefore, we only need to compute its
action on the middle summand, which is similar to the first. Let α = iθ and β = iσ. As
above, we must solve for coefficients x and y such that x · α + y · β = a−1

r βar which gives
the system of equations

x · i+ y · i = e−r · i and x · (−i) + y · (−i) = er · i

which is solved by x = − sinh(r). Therefore, this terms picks up an extra sinh(r) so we get
that the Haar measure on G is d(kark

′) = | sinh(r)|2dkdrdk′.

2.3.2 Kleinian groups

We can now define a Kleinian group which is the key algebraic structure used to construct
hyperbolic manifolds.

Definition 2.3.3 (Kleinian group). A Kleinian group is a discrete, finitely generated sub-
group of the isometries of Hn. In dimension n = 2, this is a subgroup of PSL(2,R) and in
dimension n = 3, a subgroup of PSL(2,C).

Kleinian groups correspond to the fundamental groups of hyperbolic manifolds, so they
give algebraic invariants of the topology up to group isomorphism. What the algebraic
version of Mostow rigidity will say is that any pair of Kleinian subgroups of the isometry
group of Hn, i.e. PSL(2,C) for n = 3, corresponding to a complete finite volume hyper-
bolic 3-manifold will not only be isomorphic, but conjugate. Therefore, we can take all the
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traces of the elements which will be left unchanged. These will form a field, a number field
in fact, called the trace field of Γ and give another algebraic invariant of M = Hn/Γ.

2.4 (G,X)-manifolds and the developing map

Given a hyperbolic manifold M , how can we exhibit M as Hn/Γ? Futher on, in Section
2.7, we will prove the classification of simply connected space forms (Theorem 2.7.1), which
will express a complete hyperbolic manifold as Hn/Γ. First, in this section, we want to
show an explicit way to do this by constructing the developing map which unfolds a geo-
metric object in hyperbolic space. This concept will also extend to incomplete manifolds
and the description of completeness will be characterized by whether or not when we un-
fold them, we achieve the entire hyperbolic space or not. That is, the failure of complete-
ness will be measured by the geometric unraveling of the manifold failing to encompass all
of Hn.

This concept generalizes to classes of manifolds called (G,X)-manifolds which are locally
modeled by some homogeneous space X with transition functions in a (Lie) group G.

Definition 2.4.1 ((G,X)-manifold). Let X be a smooth, connected manifold and G be a
subgroup of diffeomorphisms of X that act analytically on X. This means that for g, g′ ∈
G, if there exists an open set U ⊂ X in which g and g′ agree, g|U = g′|U , then g = g′. A
smooth manifold M is said to be a (G,X)-manifold if M has an atlas of open sets Ui that
are modelled on X in the sense that there are diffeomorphisms ϕi : Ui → Vi ⊂ X to open
subsets Vi such that the transition functions ϕi ◦ ϕ−1

j are the restrictions of the action of
some g ∈ G. Each (Ui, ϕi, Vi) is called a chart.

We say that two (G,X)-structures are equivalent if they are both contained in a further
(G,X)-atlas called a refinement. Equivalently, if their union satisfies the (G,X)-structure
requirements, it is such a refinement, so we only must verify this single amalgamation as a
potential (G,X)-atlas.

Example 2.4.2 (Hyperbolic manifolds are (G,X)-manifolds). Any hyperbolic manifold is
a (G,X)-manifold where X is Hn and G is the isometry group of hyperbolic space. This
is to say we can have an atlas of open sets on a hyperbolic manifold each of which has a
natural geometry induced by the hyperbolic metric preserved by the transition functions.

The important feature of the (G,X)-structure, which will allow us to defined the devel-
oping map, is the analytic condition. In particular, we will use this to unfold hyperbolic
manifolds. Using the above notation, we denote γij = ϕi ◦ ϕ−1

j to be our transition func-
tions, and on the (G,X)-atlas, these functions locally agree with elements of G. By the
analytic condition, on some Ui, these must be constant, and therefore, γij are locally con-
stant. Notably, they may not be truly constant because Ui ∩ Uj may contain multiple dis-
joint components.

Consider some x ∈ Ui ∩ Uj, and we can precompose ϕi with γij so that we may assume
that ϕi(x) = ϕj(x) as points in X. Therefore, we can now glue together the functions ϕi

and ϕj to a single function defined on Ui ∪ Uj using the analytic property. This would be
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the notion of unfolding M by the geometric pieces that are the Ui. However, we may have
a problem of well-definedness if we continue to do this and eventually return back to our
point x. An issue that could occur if we continue unfolding over open sets U1, . . . , Un such
that x ∈ U1 and x ∈ Un. Suppose we trace a loop starting and ending at x, the values of
the extended function from M ⊃ ⋃n

i=1 Ui → X may not agree at x. The obstruction here
would be non-trivial homotopy classes, so we realize that we must replace M with M̃ , its
universal cover.

We can now define the developing map as this analytic continuation, after fixing a base-
point, from M̃ to the model space X.

Definition 2.4.3 (Developing map). For a (G,X)-manifold M and universal cover π : M̃ →
M , let x0 ∈ U0 be a basepoint with ϕ0 : U0 → X given as a chart in the (G,X)-structure.
We define the developing map as D : M̃ → X that agrees with the analytic continuation of
ϕ0 along each path emanating from x0 in a neighborhood of the path’s endpoint. That is
to say, D = ϕy

0 ◦ π in an open neighborhood around y ∈ M̃ , the end of the path.

Since π : M̃ → M is a local diffeomorphism, M̃ carries an induced (G,X)-structure
from M . Let σ be an element in π1(M) based at x ∈ M . We can lift σ uniquely to a map
σ̃ : [0, 1] → M̃ such that π(σ(0)) = π(σ(1)) = x. Notably, for our charts ϕ0 near x given
by the (G,X)-structure, σ gives two charts around x by analytic continuation on M̃ and
the projection map. This means there exists some gσ such that ϕσ

0 = gσϕ0 for ϕσ being the
(G,X)-chart at x, given by going around the loop σ. This can be characterized using the
deck transformations of the covering map. The holonomy equation is given by

D ◦ Tσ = gσ ◦D

for Tσ : M̃ → M̃ the deck transformation corresponding to σ ∈ π1(M) and D the devel-
oping map.4 The set of such gσ ∈ G is a subgroup and is called the holonomy. It measures
how the (G,X)-structure can change as one travels around non-trivial loops, which is the
failure of the well-definedness analytic continuation without passing to the universal cover.

The holonomy can recover the (G,X)-structure of M exactly when M is complete. We
further have a method to verify the completeness topologically. M is said to be a complete
(G,X)-manifold if its developing map D : M̃ → X is a covering map. Notably, when X
is simply connected, that means it must be a homeomorphism. This will align with the
discussion in Section 2.7, where given a complete metric of constant sectional curvature -1
on M , we will use the exponential map to give a covering map Hn → M , which according
to the observations above, will be computed by the developing map.

2.5 Polyhedra

Many hyperbolic constructions hinge upon the definition of polyhedra, which are well-
defined in any model space of constant curvature, (with a bit of care taken for the sphere).

4Deck transformations of a covering map π : E → B are maps (up to homotopy) that commute with π.
For E the universal cover of B, this is naturally identified with π1(B), which is the fact being used here.
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Here we develop the theory of hyperbolic polyhedra and demonstrate how to use them to
build hyperbolic manifolds. More generalized handling of polyhedra in spherical, flat, and
hyperbolic contexts can be found in Bonahon [Bon09]. The goal will be to utilize that hy-
perbolic manifolds are expressible as Hn/Γ, a quotient of hyperbolic space by a Kleinian
group (a subgroup of the isometry group that acts discontinuously). This means M has
a fundamental domain that will be a polyhedron, and some identifications of the sides
to study it similarly to how a torus is viewed as Rn/Zn with fundamental domain [0, 1]n
with opposite sides identified. We will construct this in Subsection 2.6.1. This example
motivates the idea that compact hyperbolic manifolds should have a bounded fundamental
domain, while non-compact manifolds will have a fundamental domain that extends to in-
finity, or an ideal vertex (see Definition 2.5.8). More complex hyperbolic manifolds will be
realized as the gluing of multiple polyhedra, not necessarily bounded, along isometries of
their sides. If a side is identified to itself, it is a boundary.

First, a definition of convexity is needed to be extended for all the model spaces.

Definition 2.5.1 (Convexity). Let X denote one of the complete space forms Rn,Hn or Sn

as detailed in Theorem 2.7.1. Points p, q ∈ X are called proper if there exists a unique
geodesic adjoining them. For Rn or Hn, these can be arbitrary, but for Sn, this means
they cannot be antipodal points. A connected region Ω ⊂ X is convex if for every pair
of proper points p, q ∈ Ω, all the points along the geodesic connecting them are also con-
tained in Ω. This aligns with the natural definition for Euclidean space.

Remark 2.5.2. This definition may differ from the literature in that we required that con-
vex sets are connected. If Ω were not assumed to be connected, as is in Bonahon [Bon09],
then a pair of antipodal points {p,−p} ⊂ Sn would be considered convex. All convex sets
will be assumed to be connected, as this is the only counter-example to be avoided.

Definition 2.5.3 (Planes). A plane of dimension k in the ambient space X being Rn,Hn or
Sn is defined as

· X = Rn: an arbitrary plane of dimension k in the Euclidean sense.

· X = Hn: a k-dimensional half-plane perpendicular to the hyperplane xn = 0 or a
k-dimensional half-sphere with center on the plane {xn = 0}.

· X = Sn: a great sphere of dimension k, that is, a model is given by

{(x1, . . . , xk+1, 0, . . . , 0) ∈ Sn ⊂ Rn+1 :
∑

(xi)2 = 1}

and all rotations of it as acted on by the group O(n+ 1). Alternatively, Sn ∩ P for P
a (k + 1)-dimensional plane through the origin.

Definition 2.5.4 (Dimension). The dimension of a convex set Ω ⊂ X will be the minimal
dimension k of a k-plane that it lies inside.
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Figure 2.2: An example of a bounded triangle in H.

Definition 2.5.5 (Sides). A side of a convex set Ω is a maximally convex subset of the topo-
logical boundary ∂Ω.5

Definition 2.5.6 (Polyhedron). A polyhedron is a closed convex region Ω ⊂ X such that its
boundary ∂Ω, considered as a collection of its sides, is locally finite in X.

Example 2.5.7 (Non-example). The locally-finite condition is a concise way to rule out
curved sides. For example, the unit disk D2 ⊂ R2 is not a polyhedron because its sides
would be every point of S1 = ∂D2 bounding it. Since every point on the boundary is an
extreme point, each point is a different side. Therefore, the set of sides is not locally finite.
This same argument works for any curved convex region.

Definition 2.5.8 (Ideal Vertex). Suppose a polyhedron has two geodesics that are maxi-
mally extended on one side and meet at a point on the sphere at infinity. This point is
said to be an ideal vertex. This is a slight abuse of notation, as this point does not lie on
the hyperbolic plane, so it is not a part of the polyhedron, but it is useful to think about
these as extended to the boundary nonetheless.

Example 2.5.9. Polyhedra are notably allowed to be infinite as the closed condition just
means they contain their boundary. The closed half plane {x : xn ≥ 0} ⊂ Rn is a poly-
hedron in Rn as is the region {z : 0 ≤ Re(z) ≤ 1, |z| ≥ 1} ⊂ H, an infinite hyperbolic
polyhedron (see Figure 2.3). By the closed property, infinite polyhedra are impossible in
the round setting as Sn is compact. Furthermore, polyhedra in Sn have finitely many sides
since locally finite in a compact space is finite.

Definition 2.5.10 (Ideal Polyhedra). For Hn, there is a special class of polyhedra known
as ideal polyhedra. These are non-compact and have sides which are maximal geodesics

5Note that if a convex set were to be allowed to be not connected as in the definition from Bonahon
[Bon09], then any geodesic connecting two antipodal points would have the antipodal points together as a
single side and be a one-sided convex set with a disconnected boundary, which is absurd.
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Figure 2.3: The infinite polyhedron described in Example 2.5.9 shown here is above the circular arc, with sides
the circular arc and vertical lines. It has two ideal vertices at the points 1 and at ∞, while the point i is not an
ideal point, as neither of the geodesics connected to it are maximal as shown by the dashed extensions.

x

y

Figure 2.4: Ideal polyhedra in H. The region between the three semi-circular geodesics on the left is an ideal
triangle. The region above the two semicircles and between the vertical lines on the right is an ideal quadrilat-
eral. The area of the left ideal triangle is π and the right ideal quadrilateral is 2π.

whose boundary in Bn, Hn, or any model closed to include the sphere at infinity, inter-
sected with the sphere at infinity is finite. Informally, they have only vertices which lie on
the sphere at infinity. The finiteness of the intersection with the sphere at infinity rules
out infinite volume polyhedra – we do not want polyhedra to have a “side” at infinity. See
Figure 2.4 for examples of ideal polyhedra and Figure 2.5 for a non-example.

Definition 2.5.11 (Ridges). Consider P a polyhedron of dimension n. Every side of P is
itself a polyhedron of dimension n − 1. Let S(P ) be the set of sides of P , and similarly
for S a set of polyhedra, let S(S) be the set of sides of all P ∈ S. Define a ridge to be
some polyhedron of dimension at most n − 2 which is in S(· · · S(P )). Denote Sk(P ) to be
S(· · · S︸ ︷︷ ︸
n−k times

(P )) the ridges of dimension k.

Example 2.5.12. Consider a regular pentagon with five right angles in the hyperbolic plane.
Gluing four of these together yields the pair of pants manifold, a building block of com-
pact Riemann surfaces. The gluing is shown below in Figure 2.6 with unmarked sides
forming the boundary. The right angles ensure that this has a well-defined manifold struc-
ture, as opposed to an orbifold if the angles did not add up.
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Figure 2.5: The shaded region is not an ideal polyhedron in H, as it has a “side” at infinity. Its area is infinite.

If instead of regular pentagons, we prescribe right-angled pentagons with matching
lengths of the gluing sides, we can create pairs of pants with any triple cuff lengths. The
lengths of the circles forming the boundary are hyperbolic invariants, notably, since there
is no rigidity in dimension two. This gives a moduli space of pairs of pants given by R3

>0.

Figure 2.6: Gluing four right-angled pentagons to construct a pair of pants. The sides not glued form the
boundary. The lengths of the three circles forming the boundary are hyperbolic invariants. The outer horizontal
cut would be akin to cutting open your pants from your left ankle to left hip. The middle cuts would be the
interior of each leg from one inner ankle to the other. Figure created by Kalia Firester.

Example 2.5.13 (Riemann surfaces). A fundamental construction in the theory of hyper-
bolic Riemann surfaces is colloquially known as the pair of pants decomposition, and its
roots lie in the classification of surfaces which is due to building up a Riemann surface via
a Morse function. We will not detail this construction and we refer the reader to Donald-
son [Don11], Chapter 2.

A compact Riemann surface of genus g ≥ 2 can be constructed with 2g − 2 hyper-
bolic pairs of pants as constructed above in Example 2.5.12. This can be seen by gluing
two pairs of pants together to get a genus 2 surface, (see Figure 2.7), and every additional
genus requires two more pairs of pants. In order to glue them together according to their
boundary cuffs, we need the cuff-lengths to come in pairs.
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Figure 2.7: A genus 2 Riemann surface constructed by gluing hyperbolic pairs of pants. Image created by Jean
Raimbault and accessed from https://en.wikipedia.org/wiki/Pair_of_pants_(mathematics).

As described in the above example, these cuff-lengths can be prescribed as any triple of
positive real numbers. Therefore, we have 3g − 3 dimensions to choose these pairs of pants.
Furthermore, the cuffs can be glued by rotating the cuffs, so there is an angle component
associated to each gluing that is parameterized by an arbitrary real number. There are
3g − 3 pairs of cuffs to be glued, and there is a further 3g − 3 dimensional space of angles
to glue along.

The above construction shows a 6g − 6 real-dimensional parameter space of hyper-
bolic structures on Riemann surfaces of genus g. We will denote this space Tg, and we
have shown it is contractible.6 There is an action of the mapping class group, which is the
group of diffeomorphisms modulo smooth isotopy, on Tg, and the quotient is the moduli
space Mg which will have dimension 3g − 3. The mapping class group captures discrete
diffeomorphism classes. For further details on this topic, we refer the reader to Hubbard
[Hub06] as a robust exposition of the field.

There are two other main constructions of Mg, one using geometric invariant theory,
and another by Hodge theory. This was rigorously done by Deligne and Mumford [DM69],
and they further developed a compactification (algebraically proper) Mg in the algebraic
setting. The notion that Mg is not a manifold, but an orbifold, is algebraically expressed
that Mg is not a scheme, but a stack.

The dimension 3g − 3 of Mg was known for quite some time, with many foundational
results in algebraic geometry assuming the existence of a moduli space before it was rigor-
ously constructed. The dimension can be computed quite easily using the Hilbert scheme,
for example. For further reading, we suggest Harris and Morrison [HM98].

6This space is known as Teichmüller space, but Teichmüller was a huge Nazi, so perhaps we ought to
avoid this name to only commemorate the math, and not the man.
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Example 2.5.14 (Seifert-Weber dodecahedral space). We can use a method of continuity
to find polyhedra that glue well. Consider a hyperbolic dodecahedron. This can be found
by taking, in the Poincaré disk model B3, points all of Euclidean distance r from the ori-
gin that are the vertices of a Euclidean dodecahedron and taking their hyperbolic convex
hull. As r varies from 0 to 1, there will be a unique radius where we will be able to glue
this hyperbolic dodecahedral polygon along its boundary to get a smooth hyperbolic mani-
fold. We can show that when r = 1, the ideal dodecahedron will have dihedral angles that
are π/3, and when r = ε, its dihedral angles will be quite close to the Euclidean dihedral
angle of 2 atan(γ) ≈ 116.5◦ for γ = 1+

√
5

2 , the golden ratio. Notably, the gluing condi-
tion of five dihedral angles adding to 2π will be at 72◦ degrees, which falls between these
values. Therefore, there is indeed a unique good value of r that will allow such a gluing
to satisfy the manifold criteria. The gluing here is given by identifying opposite sides by a
3π/5 twist. This space is called the Seifer-Weber dodecahedral space, and is in fact not a
Haken manifold, meaning it does not contain an orientable, incompressible surface.

Haken manifolds are historically interesting because Thurston first proved a hyperboliza-
tion theorem for Haken manifolds, later generalized in the geometrization theorem. We
point the reader to McMullen [McM92] for more details on the geometrization of Haken
manifolds.

Theorem 2.5.15 (Thurston’s hyperbolization theorem). If M is a compact, irreducible,
atoroidal, Haken manifold with boundary satisfying χ(∂M) = 0, then M◦ = M \ ∂M
has a complete hyperbolic structure with finite volume.

Atoroidal here means that M does not contain an embedded, non-boundary parallel, in-
compressible torus.

Example 2.5.16 (Tetrahedron outside the sphere at infinity). We can use the above ex-
ample to motivate other gluings of regular polyhedra. We know that if we tried to glue
a tetrahedron to itself by identifying the boundary sides, it would never yield a manifold
structure, as the Euler characteristic does not vanish (see Proposition 2.6.2). Furthermore,
even with ideal angles, dihedral angles will not add up. A key insight is to not stop at a
tetrahedron with its vertices on the boundary sphere at infinity, but to take one with its
vertices outside.

The problem is that now the part of the tetrahedron that lies inside B3 intersects the
sphere at infinity in a large region, so it is very far away from being finite volume. We can
take the boundary of the intersection with the sphere at infinity and cap it off geodesically
with hyperbolic planes meeting at right angles. This will yield an ideal polyhedron inside
B3 that is of finite volume. We can size the tetrahedron to have dihedral angles quite small
of π

n
and π

2 between the hyperbolic planar caps using continuity. This is visualized in Fig-
ure 2.8.
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Figure 2.8: In the Klein model K3, we have a tetrahedron outside the unit disk and to construct a hyperbolic
manifold, we take its intersection with K3 and cap off the components, so that the resulting space is a polyhe-
dron with finite volume. We size the tetrahedron so the dihedral angles between the tetrahedron sides are π/n,
and the diheral angles between the caps are π/2. The right image shows the ideal hyperbolic polyhedron inside
K3. The dashed lines lie inside the sphere K3, and the bold lines lie outside. The edges of the fundamental do-
main come in two types, denoting the two types of dihedral angles. The first are the longer lines that are edges
of the original tetrahedron. The second are the shorter ones forming the caps around each vertex.

We can now associate a group Γ generated by all reflections through the sides of the
polyhedron. To finish, we take a finite index subgroup that is torsion free Γ′ ⊂ Γ to get
Bn/Γ′, a finite volume hyperbolic 3-manifold.
Example 2.5.17 (Orbifolds). Reckless gluing of polyhedra can have bad orbifold singulari-
ties. See Proposition 2.6.1 for conditions to glue polyhedra and get a manifold. We could
instead consider this a feature, not a bug, as these are interesting spaces in their own right
and do come up naturally, such as in moduli spaces. As mentioned above, for Riemann
surfaces, the modueli space Mg is an orbifold, not a manifold. This can be rephrased as
giving only the existence of a coarse, but not fine, moduli space of Riemann surfaces.

Expanding to hyperbolic orbifolds, we can construct many examples by taking poly-
hedra and gluing pairs of their faces together along isometries. Any polyhedron can be
turned into a closed orbifold in this manner by taking two copies of it and identifying the
faces along the identity maps. If we take an ideal tetrahedron and perform this procedure,
we get a hyperbolic orbifold that is not a manifold because it does not satisfy Poincaré du-
ality.
Example 2.5.18 (Bad gluing of ideal triangles). If we take an ideal triangle and glue it to
itself along the canonical identifications of the boundary, the resulting manifold is a triply-
punctured sphere, and is geodesically complete. However, this property generally fails
if the gluing is not along the canonical identifications. We work in the upper half-plane
model, and will shift only a single edge of the triangle. In Figure 2.9 below, we have shown
two ideal triangles already glued at the vertical edge. We glue the two maximal geodesics
that are the semi-circles via the canonical gluing, which is reflection. However, we glue the
left most vertical line to the right most vertical line by vertical multiplication by two. We
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Figure 2.9: A path of finite length escaping to infinity.

know that the distance between two vertical points x + iy and x + iy′ is log(y/y′) from
integrating the metric 1

y
. Therefore, multiplication by a scalar is an isometry. We can now

take the curve that is always moving horizontally and to the left. Each time it hits the
left-most vertical line, it jumps to twice its height and comes back on the right-most ver-
tical line. The length as it travels to the left is 2

y2 assuming that the outer most vertical
lines are at real parts ±1. The distance is computed by integrating 1

y
as x goes from 1 to

−1. Therefore, we get the length of the curve starting at height y to be

2
y2 + 2

(2y)2 + 2
(4y)2 + · · · = 2

y2

∑ 1
22n

< ∞

is finite, so we have found a curve that escapes to infinity in finite time, showing this space
is incomplete. In fact, this curve could be shortened by replacing these segments with the
geodesics connecting the endpoints, but this would have diminishing effect as y → ∞ and
the geodesics become better approximated by horizontal lines. We can also see the incom-
pleteness through the developing map. In this case, as we unfold each ideal triangle, the
vertical height doubles as we move to the left. This has a geometric picture; instead of hav-
ing the dashed path in Figure 2.9 jump back, we could continue unfolding each triangle
and resize it appropriately. This is shown in Figure 2.10.

2.6 Constructing hyperbolic 3-manifolds from polyhedra

Consider a set P1, . . . , Pm of polyhedra in Hn, and let P = ⊔
Pi. Define a gluing map that

identifies pairs of sides, potentially gluing a side to itself via the identity, giving rise to
q : P → M the quotient map. If M is a well-defined manifold, this gives a hyperbolic struc-
ture on the interior of M since q is a homeomorphism on the interior, so the metric can be
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Figure 2.10: Each ideal triangle is glued to the next, unfolding the “bad gluing”. Since each ideal triangle has
half the width of its left neighbor, this unfolding never attains the right most dashed line, and has infinitely
many ideal triangles squeezed up until it. The dashed path shows the incompleteness, as it has a finite length,
but approaches infinity represented by the vertical dashed line in finite time.

carried over from P to M on this region. Using this description, if M is a well-defined hy-
perbolic manifold, it can be understood by a fundamental domain in Hn by taking some
representation of P1 embedded, and if a side is identified to Pi, draw that polyhedron in
Hn sharing this side and continue for all Pi.

Denote M◦ as q(P \ ∂P ) the image of the interior, which does have a well defined hy-
perbolic structure. The question of when this extends to be a global structure on M can
be reduced to a local one as follows. There are many other gluing criteria and properties
that can help understand hyperbolic manifolds and orbifolds. For further constructions on
hyperbolic polyhedra and gluing, we refer the reader to Lackenby [Lac00].

Proposition 2.6.1. Suppose for every x ∈ M there exists a homeomorphism φ : Ux →
Bε(0) ⊂ Bn mapping x to 0 that is an isometry on each component of Ux ∩ M◦. Then M
has a hyperbolic structure.

Proof. For x ∈ M◦, this is always true as ε can be taken to be smaller than the distance
to any of the boundary sides of the Pi containing x, and then Ux is given by a hyperbolic
chart centered at x. Consider that for x ∈ M \ M◦, by shrinking ε, the restriction of Ux

to each component of M◦ can contain x. That is, x lies on some ridge and consider ε small
enough so that Ux only intersects the sides that are adjacent to x. This will give the nec-
essary hyperbolic chart to define a hyperbolic structure globally. Consider an arbitrary
preimage q(x̃) = x. A small ball around x̃ can be mapped through φx to Bn by φx. That
is, for each x̃ ∈ P , the map φx gives

hx̃ : Bε(x̃) → Bε(0) ⊂ Bn, hx̃|M◦ = φx ◦ q. (2.17)

The only verification left to ensure these charts φx define hyperbolic charts covering M is
that the transition functions are isometries, that is, φy ◦φ−1

x is an isometry of regions in Bn.
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This is immediately true for all x ∈ M◦ by considering x ∈ Pi an interior point and the
restriction of the hyperbolic metric on Pi to the charts around close points x and y. Let X
be a component of Ux ∩ Uy. Take a path between any two x, y ∈ X ∩ M◦ which avoids the
ridges (see Definition 2.5.11). For any z ∈ φx(q(∂P ) ∩ X) ⊂ Bε(0) that is not the image of
a point lying on a ridge, the map φy ◦ φ−1

x must be an isometry on some neighborhood of
z. Take two distinct points z1, z2 ∈ P that are preimages of φ−1

x (z) under q. If these do not
exist, then it means the side that contains z was identified to itself, and it is a boundary
point of M , so it can be ignored. This means that z1 ∈ F1 and z2 ∈ F2 for F1, F2 some
sides of P1 and P2 that are identified isometrically via the map k : F1 → F2. Similarly,
x1, y1 ∈ F1 are preimages of x and y in the first face, and x2, y2 ∈ F2 the corresponding
images in F2.

The map k can be extended to an isometry of all Hn in a well-defined manner by enforc-
ing that k composes with the hxi

maps, that is hx2 ◦ k = hx1 . That is, hx̃ can be extended
to all of Hn by considering an isometry that takes x̃ ∈ Pi to the point 0 ∈ Bn and ex-
tending via the identity since the map hx̃ will then just be the restriction to the small ball
Bε(0) ⊂ Bn. Therefore, we have the commutative diagram given by these charts

Bn Bε(x1) ⊂ F1

Bε(x2) ⊂ F2 Bn

h−1
x1

h−1
x2 hy1k

hy2

⇝
Bn Hn

Hn Bn

h−1
x1

h−1
x2 hy1k

hy2

(2.18)

which show that around z, the composition of φy ◦ φ−1
x is an isometry. These therefore give

M local charts that are isometric to open sets of Bn with isometric transition functions, so
M is a hyperbolic manifold.

The above argument shows that we get a manifold structure from a polyhedra gluing
when the boundary of the polyhedra glue together to avoid orbifold singularities where the
local structure is Rn and not Rn/Cd for Cd the cyclic group of order d. This is generalized
to other CSC geometries by the Poincaré polyhedra theorem 2.6.4 below. This generalized
theorem gives conditions that in dimension three simplify greatly. In particular, in dimen-
sion three, it is very easy to verify if we get a manifold, the only check that we must make
is that the resulting space has vanishing Euler characteristic. This can be phrased simply
by verifying that M satisfies Poincaré duality in the following Proposition 2.6.2.
Proposition 2.6.2. Let P1, . . . , Pv be three-dimensional polyhedra such that the number of
faces with K sides is even. Pick an identification of the sides: a matching of orientation-
reversing isometries between the faces. A priori, this gives a three-dimensional CW-complex.
This is a manifold if and only if it has Euler characteristic 0.
Proof. If the structure is a manifold, by Poincaré duality, the rank of the degree one and
two cohomology groups are equal and therefore the Euler characteristic vanishes.

For the other direction, we must show that a vanishing Euler characteristic gives a man-
ifold structure. We first give a bound on the Euler characteristic based on the links of all
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vertices. We use some constructions on a simplicial complex. In a simplicial complex Σ, we
define the link of a simplex σ ⊂ Σ notating it as lk(σ). Let τ1, . . . , τn be the simplices con-
taining σ. We can define σi to be the simplex opposite σ in τu. The link lk(σ) is given as
the simplicial subcomplex by all the σi.

Consider a filled in triangle and σ be a vertex. There are τ1, τ2 the edges with one side
σ and the other two vertices are σ1, σ2. There is also the 2-cell τ3 that is the triangle and
then σ3 is the edge across from the specified vertex.

Let’s assume by subdivision that all the polyhedra are tetrahedra. We can compute the
Euler characteristic as the alternating sum of the different dimension cells, so let’s label
these v, e, f, t for the number of vertices, edges, faces, and tetrahedra. The Euler character-
istic is v − e+ f − t.

For each vertex vi, consider lk(vi), the link of vi. Because we subdivided to all tetrahe-
dra, we have relations among the number of k-cells. Each tetrahedron has 4 faces, but X
has only half this amount since they are glued in pairs, so we know that f = 2t.

We consider the link of each vertex. If we take all these simplicial subcomplexes com-
bined, we realize that every edge accounts for two vertices in these links of vertices. Sim-
ilarly, each face has three edges surrounding it and each tetrahedron has four faces. This
allows us to compute the sum of the Euler characteristics of the links (which are surfaces)

v∑
i=1

χ(lk(vi)) = 2e− 3f + 4t.

We now compute the following formula for χ(X) as

χ(X) = v − e+ f − t

= v − 1
2

(2e− 2f + 2t)

= v − 1
2

(2e− 3f + 4t) using f = 2t

= v − 1
2

v∑
i=1

χ(lk(vi)) ≥ 0.

The last inequality uses that the Euler characteristic of S2 is two, easily computed using
that S2 can be made from a single vertex and a single 2-cell. Any other surface has Euler
characteristic strictly less than two. In general, χ(Σg) = 2 − 2g, for g the genus.

What is left to be shown is the following claim, that X is a manifold if and only if every
link of a vertex is a sphere S2, (homeomorphically, but even homologically suffices as we
only care that its Euler characteristic is 0). This will cause the above computation to be
sharp, so χ(X) will vanish. Any gluing pattern in two dimensions always forms a manifold.
From this, we use that the link of a vertex has an induced gluing structure from X which
is a compact manifold, namely a genus g surface. We must have that X is locally simply
connected, Σg must be simply connected which implies g = 0. By assumption, the above
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can only vanish if each link is a sphere. The following lemma therefore completes the re-
sult.
Lemma 2.6.3 (Spherical links). Let X be a simplicial complex defined by a polyhedra gluing.
If the link of every simplex of dimension p is homeomorphic to Sn−p−1, namely a sphere of
the proper dimension, then X is a manifold.

Proof. Every point x ∈ X has a neighborhood given by the product of a disk of dimen-
sion p with a cone over a link of a simplex. Let x lie in a p-simplex, and we take the link
of said simplex, which is the cross-section of a neighborhood of σ. Furthermore, the sim-
plex σ is homeomorphic to a disk Dp. The cone over the link, which by assumption is the
sphere Sn−p−1, is Dn−p. Therefore, a neighborhood of x is Dp × Dn−p, which is homeomor-
phic to Dn, giving a local chart.

Geometrically, the obstruction given above for a link being Σg for g ≥ 1 is that X must
be locally simply connected to be a manifold. The above lemma showed that the neighbor-
hood of such a vertex will be homotopic to the link, so any open set around it has π1 the
same as the link. Therefore, the presumption of locally simply connected forces each link
to be S2, and therefore the Euler characteristic vanishing enforces that X is locally simply
connected.

To extend this to higher dimensions, there are more verifications necessary on the higher
codimension ridges. The result is summarized by the Poincaré polyhedra theorem below.

Theorem 2.6.4 (Poincaré polyhedra theorem). Let M be the space obtained by gluing finitely
many totally geodesic compact polyhedra (spherical, Euclidean, or hyperbolic) Pi along pair-
wise isometric identifications of their sides. If for each codimension two ridge φ, the di-
hedral angles add up to 2π and the composition of the gluing isometries around φ are the
identity on φ, then M has a (spherical, Euclidean, or hyperbolic) orbifold structure. Fur-
thermore, if the links in codimension three and higher are simply connected, then M is a
manifold.

Example 2.6.5 (Limit of pair of pants). Going back to one more example of the geomet-
ric topology. A pair of pants is uniquely determined by the lengths of the three cuffs. As
these shrink to zero, it becomes three cusps. This has the structure of the triply-punctured
sphere with a unique hyperbolic metric. As a Riemann surface with negative Euler charac-
teristic, it must be hyperbolic, and since the automorphisms of a sphere are triply transi-
tive, it is unique. This is achieved by gluing two ideal triangles along the canonical identifi-
cations of their boundaries.
Example 2.6.6 (Pants whose cuffs do not shrink). Topologically, the pair of pants without
the boundary is the triply-punctured sphere, but the hyperbolic structures do not match.
This is seen because the pair of pants has geodesics of length bounded below on each cuff.
Like the triply-punctured sphere, topologically, the interior of the pair of pants can be con-
structed by gluing two ideal triangles, but not along their canonical boundary identifica-
tions. Such a “bad gluing” was shown in Example 2.5.18. The picture is that each vertex
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Figure 2.11: The interior of a pair of pants can be expressed as two ideal triangles glued along non-canonical
identifications of their boundary sides, depending on the lengths of the cuffs. Figure created by Kalia Firester.

of the ideal triangles no longer goes to infinity, but wraps infinitely many times around
each cuff, with closer and closer winding. This is shows below in Figure 2.11.

2.6.1 Dirichlet domains

Our goal in this subsection is to complete the picture of how to translate among the per-
spectives on hyperbolic manifolds. Given M presented as Hn/Γ, we want to express M as
a polyhedral gluing. We can take some x ∈ M as a basepoint and lift it to an arbitrary
x0 ∈ Hn. The key construction is to consider the orbit Γx0 ⊂ Hn which is a discrete col-
lection of points indexed by γ ∈ Γ. The polyhedra gluing will be defined by taking the
hyperbolic Voronoi region around x0. This is the collection of points y ∈ Hn such that
dHn(x0, y) ≤ dHn(γ(x0), y) for any γ ∈ Γ. What we imagine here is that each γ(x0) is the
center of a region of points that are closest only to it. The gluing here will be given via
identification of the sides of this domain via the isometries γ ∈ Γ, which is exactly the
projection map π : Hn → M .

Definition 2.6.7 (Dirichlet domain). For x0 ∈ Hn and Γ a Kleinian group, the Dirichlet do-
main D is defined by taking the orbit of x0 in Hn and letting D be the hyperbolic Voronoi
region around x0:

D = {x ∈ Hn : dHn(x, x0) ≤ dHn(γ(x), x0) ∀ γ ∈ Γ}

which are the points closer to x0 than to any other point in its orbit.
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Theorem 2.6.8 (Dirichlet domain is a fundamental domain). The Dirichlet domain D is a
connected, convex, locally finite fundamental domain for the complete, compact hyperbolic
manifolds M = Hn/Γ with geodesic boundary.

More generally, if Γ is an arbitrary discrete group, the theorem holds if StabΓ(x0) = Id.

Proof. There are a couple of verifications necessary to show that this is indeed a polye-
hdral gluing schema. Firstly, this region is convex by the triangle inequality. We need to
show that there are only finitely many sides, which is really a two-part problem: first we
must show that only finitely many points γ(x0) that share points in Hn of minimal dis-
tance to both of them, and second, we must verify that the boundary consists of geodesic
sides. The second point is quite immediate as the locus of points equidistant from any two
points is a totally geodesic hyperplane. Therefore, the Voronoi region around x0 is the in-
tersection of half-spaces on each side of the geodesic boundary between x0 and its neigh-
bors, so it is a polyhedron if and only if there are only finitely many neighbors. Let us
name this region A0.

By construction, the interior of A0 is the complement of a measure 0 set on M , so it
has the same finite volume as M . This eliminates the case of the Voronoi region around
x0 containing an open region of the boundary at infinity, so it will be a closed polyhedron
with potentially finitely many ideal vertices.

To verify locally finite, we must show that for any compact K contained in A0, we have
that γ(K) ∩ A0 6= ∅ for only finitely many γ. It is further sufficient to check this on a
disk centered at x0 of radius r, so name this region K. Suppose that γ(K) ∩ A0 is not
empty for some non-trivial γ ∈ Γ. This means that there is some point x ∈ A0 such that
dHn(x0, γ

−1x) ≤ r. We can compute then that

dHn(x0, γ
−1x0) ≤ dHn(x0, γ

−1x) + dHn(γ−1x, γ−1x0) ≤ r + dHn(x0, x)

from the triangle inequality. Because x ∈ A0, we know that dHn(x0, x) ≤ dHn(x0, γ
−1x) ≤ r,

so we combine these inequalities to get

dHn(x0, γ
−1x) ≤ 2r.

By the compactness of the sphere, there can only be finitely many neighbors to avoid an
accumulation point.

2.7 Space forms

We now tackle the Riemannian definition of hyperbolic manifolds. The contents and meth-
ods of this section will not be utilized in the proofs of Mostow rigidity, and therefore may
be skipped for a reader without an interest in Riemannian geometry.

The Riemannian definition of a hyperbolic manifold is given by having constant sec-
tional curvature (CSC7) -1 everywhere. We recall the notion of sectional curvature given

7Not to be confused with constant scalar curvature, often denoted csc.
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before in Proposition 2.1.10, and we verified that indeed Hn is a CSC manifold with sec-
tional curvature -1 everywhere. We will compute that such a manifold can be rescaled
such that its sectional curvature can be assumed to be −1, 0, 1.

Theorem 2.7.1 (CSC classification). Let M be a complete and connected manifold of con-
stant sectional curvature K. Such a manifold is often called a space form. The universal
cover M̃ is isometric to one of the following, depending on the sign of K:

(a) Hn if K = −1

(b) Rn if K = 0

(c) Sn if K = 1.

Let g be a CSC metric on M . Given a conformal change of the metric g̃ = e2ϕg, similar
computations to Proposition 2.1.10 will give the formula

R̃ijk` = e2ϕRijk` − e2ϕ (gikTj` + gj`Tik − gi`Tjk − gjkTi`) (2.19)

for Tij = ∇i∇jϕ− ∇iϕ∇jϕ+ 1
2 |dϕ|2gij. Notably, if ϕ ≡ c is constant, then Tij ≡ 0 vanishes.

In this case, R̃ is simply the scaled R. This tells us that the computation for the sectional
curvature conformally scaled by a constant is

K̃ij = R̃ijij

g̃iig̃jj − g̃2
ij

= e−2cKij (2.20)

in local coordinate coordinates using a frame of the tangent space. Therefore, we can al-
ways re-parameterize by setting e−2c = |K−1| to reduce to one of the three cases above.

The universal π : M̃ → M inherits a metric of constant curvature by pulling back the
metric on M to be either flat or have constant sectional curvature ±1.

An important theorem used to prove the classification of simply connected space forms
is due to Cartan, informally stating that locally the metric can be recovered from the cur-
vature. For the setup, let f : M → N be a smooth map between manifolds of the same
dimension. Let p ∈ M and q ∈ N and i : TpM → TqN be a linear isometry between the
tangent spaces at these points. Define p ∈ V ⊂ M to be a normal neighborhood of p such
that expq is defined at i ◦ exp−1

p (V ). Define f : V → N as f(v) = expq ◦ i ◦ exp−1
p (v).8

For all v ∈ V , there exists a unique normalized geodesic γ : [0, t] → V from p to v. Let Pt

be the parallel transport from p to v along γ and P̃t is the parallel transport on N along
γ̃ the geodesic defined by γ̃(0) = q and d

dt
γ̃
∣∣∣
t=0

= i(γ̇(0)). Define φt : TvM → Tf(v)N

by φt(v) = P̃t ◦ i ◦ P−1
t (v). Denote R and R̃ to be the Riemann curvatures of M and N ,

respectively.
8The map exp(−) is the exponential map which takes in a tangent vector and flows along the unique

geodesic emanating from that tangent vector one unit of time. The Hopf-Rinow theorem has a third com-
ponent saying that this map is defined on the entire tangent space for a complete manifold, so this is
well-defined in this context.
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Theorem 2.7.2 (Cartan). If for all v ∈ V and any V,W, P,Q ∈ TvM , the equality

Rijk`V
iW jP kQ` = R̃ijk`φt(V )iφt(W )jφt(P )kφt(Q)`

holds, then f : V → N is a local isometry onto its image and dfp = i.

Proof. Consider some v ∈ V , and let γ : [0, T ] → M be the normalized geodesic adjoining
p to v. For a tangent vector v ∈ TvM , let J be the Jacobi field along γ with initial condi-
tion that J(0) = 0 and J(T ) = v. Let ei be an orthonormal frame of TvM with e1 = γ̇(0)
and ei(t) be the parallel transport along γ to γ(t). Locally, J(t) is expressible using this
basis and we can label the coefficients by functions yi(t), meaning J(t) = yi(t)ei(t). The
Jacobi equation is given by

ÿk(t) + |γ̇|2yj(t)R1j1k = 0 (2.21)
using ei as the coordinate system. Note, the above gives separate equations for each k. It
is not summed because the upper and lower indices of k do not appear in a product. De-
fine γ̃ to be the normalized geodesic originating at q with ˙̃γ(0) = i(γ̇(0)) and J̃(t) be the
field given by φt(J(t)) for t ∈ [0, T ]. Similarly, let ẽi(t) = φt(ei(t)). Since φt is linear, we
have a corresponding equation J̃(t) = yi(t)ẽi(t).

The hypothesis that contracting any four vector fields using the curvature is invariant
under passing the vector fields through φt can be applied to say that R1j1i = R̃1j1r by
letting V,W, P,Q be e1, ej, e1, er respectively. The Jacobi equation 2.21 can be expressed
then as

ÿk(t) + |γ̇|2yj(t)R̃1j1k = 0, (2.22)
demonstrating that J̃ is a Jacobi field along γ̃ with J̃(0) = 0. Since parallel transport is an
isometry, |J̃(T )| = |J(T )|.

At the initial point, ˙̃J(0) = i(J̇(0)) by definition. Since both J and J̃ are Jacobi fields
that vanish at 0, they satisfy

J(t) = (d expp)tγ̇(0)(tJ̇(0)), J̃(t) = (d expq)t ˙̃γ(0)(t ˙̃J(0)). (2.23)

This can be rearranged to yield the equality

J̃(T ) = (d expq)T ˙̃γ(0)Ti( ˙̃J(0)) = (d expq)T ˙̃γ(0) ◦ i ◦ ((d expp)T γ̇(0))−1(J(T )) = dfv(J(T )).
(2.24)

Showing that J̃(T ) = dfv(v) = dfv(J(T )) finishes the proof.

This theorem will be applied to spaces of constant curvature to demonstrate isometries
using Corollary 2.7.4 mainly.

Corollary 2.7.3. Let M and N be manifolds of the same dimension and same constant cur-
vature. Let p ∈ M and q ∈ N . For ei an orthonormal basis of TpM and fi an orthonormal
basis of TqN , there exists a p ∈ V ⊂ M normal neighborhood V of p and corresponding
q ∈ U ⊂ N and an isometry F : V → U such that dFp(ei) = fi.
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Proof. Take i as mapping ei 7→ fi to fit into the criteria of Theorem 2.7.2 and the curva-
ture criteria is immediately met.

Letting N = M in the above gives the following:
Corollary 2.7.4. Let M be a space of constant curvature. For p, q ∈ M distinct points, let
ei and fi be orthonormal bases of TpM and TqM , respectively. There exist neighborhoods
p ∈ V and q ∈ U and an isometry F : V → U such that dFp(ei) = fi.

These results will be used to prove Theorem 2.7.1

Proof of the CSC Theorem 2.7.1. The flat and negatively curved manifolds M with metric
g of constant sectional curvature 0 or −1 can be proven together. Let π : M̃ → M be the
universal cover with induced metric π∗g. Let ∆ denote Rn or Hn for the two cases and this
method will handle both simultaneously. Let p ∈ ∆ and q ∈ M̃ and fix a linear isometry
i : Tp(∆) → Tq(M̃). Consider the map

f : expq ◦ i ◦ exp−1
p : ∆ → M̃.

Since ∆ is complete and simply connected, (as known for Rn and proven for Hn in Propo-
sition 2.2.3), with non-positive sectional curvature, this map f is well-defined. Theorem
2.7.2 states that f is a local isometry. Showing further that f is a covering space will
prove that it is a global diffeomorphism as M̃ is complete and simply connected, so any
connected covering space is a diffeomorphism. This is proven via Lemma 2.7.5.

For positive curvature, the above argument does not work exactly because the map f
would not be well-defined on all of Sn. We can rectify this by removing a point to define it
on the punctured sphere and repeating this using a different point. Then Lemma 2.7.6 can
be applied, that if two isometries agree on a point and their derivatives agree, they are the
same. For the final case of positive sectional curvature, it must be shown that there exists
some f : Sn → M̃ which is a diffeomorphism. Fix p ∈ Sn and q ∈ M̃ and a linear isometry
i : TpS

n → TqM̃ . For −p the antipode of p, define the map

f : expq ◦ i ◦ exp−1
p : Sn \ {−p} → M̃,

and from Theorem 2.7.2, f is a local isometry. For some p′ in Sn \{p,−p}, define q′ = f(p′)
and i′ = dfp′ . Define f ′ as

f ′ = expq′ ◦ i′ ◦ exp−1
p′ : Sn \ {−p′} → M̃.

For n > 1, Sn \ {p1, . . . , pn} ∼= Rn \ {p1, . . . , pn−1} is connected, so notably Sn \ {−p,−p′}
is connected. The key point here is that f(p′) = q′ = f ′(p′) and their derivatives dfp′ = i′ =
df ′

p′ , so Lemma 2.7.6 gives that that f = f ′ on Sn \ {−p,−p′}. Therefore, we can define
F : Sn → M̃ by f on Sn \ {−p} and by f ′ on Sn \ {−p′}, which is well-defined since f
and f ′ agree on the overlap. F is a local isometry as it is locally defined by isometries and
since Sn is compact, this is a covering space since M̃ is simply connected. Therefore, F is
a diffeomorphism completing the proof.
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Lemma 2.7.5. Let M be a complete Riemannian manifold with metric g. Suppose f : M →
N is a local isometry between manifolds of the same dimension. If for all p ∈ M and all
v ∈ TpM the inequality |dfp(v)|g ≥ |v|g holds, then f is a covering map.

Proof. In the category of manifolds, it is sufficient to show that a map satisfies the unique
path lifting property to show that it is a covering space. To demonstrate this, a unique lift
γ̃ : [0, 1] → M must be given for any γ : [0, 1] → N such that f ◦ γ̃ = γ and starting point
γ̃(0) = c for any c such that f(c) = γ(0).

To produce this, fix some starting point c such that f(c) = γ(0). Because f is a local
isometry, for some ε > 0 there exists a short time existence of a γ̃ : [0, ε) such that f ◦
γ̃ = γ|[0,ε). The idea is to re-center the analysis at γ̃(ε) to extend this curve and use the
method of continuity to cover all the points in [0, 1] on γ. Consider the set of achievable
values

A = {t ∈ [0, 1] : γ̃ can be extended to a lift over γ|[0,t] with γ̃(0) = c}.

By definition, 0 ∈ A by fixing a preimage c of γ(0). This is guaranteed by the fact that f
is a local isometry.

The above argument shows that A is open. Therefore, to show that A = [0, 1], since it
is non-empty, it remains to be shown that A is closed. Suppose [0, t0) ⊂ A and consider
an increasing sequence tn → t0. Since γ is continuous and M is complete, the set γ̃(tn) has
an accumulation point and is therefore contained in some compact set K ⊂ M . Suppose
this were not true, then the computation of the length of the curve from c to γ̃(tn) would
diverge as

L(γ|[0,tn]) =
∫ tn

0

∣∣∣∣∣dγdt
∣∣∣∣∣ dt

=
∫ tn

0

∣∣∣∣∣dfγ̃(t)

(
dγ̃

dt

)∣∣∣∣∣ dt
≥
∫ tn

0

∣∣∣∣∣dγ̃dt
∣∣∣∣∣ dt

≥ dgM
(γ̃(0), γ̃(tn)),

(2.25)

which would imply that the distance between γ̃(0) and γ̃(tn) in M is unbounded. The
Hopf-Rinow theorem says that completeness implies that closed and bounded sets are
metrically and geodesically complete, so if this is unbounded, then it violates that M is
complete. Therefore, {γ̃(tj)} ⊂ K ⋐ M the points are contained in some compact sub-
set K. By compactness, this has an accumulation point r ∈ M . Let V 3 r be a neigh-
borhood of M such that f is a diffeomorphism between V and its image. It must be that
γ(t0) ∈ f(V ), so by continuity, γ must map some interval I = [a, b] ⊂ [0, 1] into f(V ) with
a < t0 < b. For n � 0 large enough, γ̃(tn) is contained in V , and we take the lifting given
by f as a local diffeomorphism of γ(I) through the point r in M . This lift will agree with
γ̃ on [0, tn) ∩ I since f is locally a diffeomorphism in this region. This demonstrates an
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extension of γ̃ to t0 showing A is closed. The conclusion now follows since the path lifting
property is now verified, so M is indeed a covering space.

Lemma 2.7.6. Let f, g : M → N be two local isometries between two connected manifolds
of the same dimension. If f(p) = g(p) and dfp = dgp for some point p, then f = g globally.

Proof. Since f, g are local isometries, dfp and dgp are non-trivial and there exists a normal
neighborhood p ∈ V ⊂ M such that f |V and g|V are diffeomorphisms. Define φ = f−1 ◦ g :
V → V which has the property that φ(p) = p and dφp = Id. For any v ∈ V , there exists a
unique vector v ∈ TpM which exponentiated is v, expp(v) = v. Since dφp = Id, φ(v) = v
as well for all such v. Therefore, f |V = g|V . This procedure can now be re-centered at any
v ∈ V to extend to a larger neighborhood. If M were compact, this would complete the
proof since it is connected.

For M not connected, an argument must be made to extend this along arbitrary paths
from p to an arbitrary point q ∈ M using the method of continuity. Let γ : [0, 1] → M be
a path from p to q, guaranteed by the connectedness of M . Define the set

A = {t ∈ [0, 1] : f(γ(t)) = g(γ(t)), dfγ(t) = dgγ(t)}

of times along γ where f and g and their derivatives agree. 0 ∈ A by assumption. The
above argument shows that A is open, and in particular supA > 0. A is also closed since
the first property is closed by continuity and the second by continuity of the derivative.
Therefore, supA = 1 and f = g can be globally extended, completing the proof.

The takeaway from the CSC theorem is that any hyperbolic manifold M is expressible
as Hn/Γ for Γ a discrete subgroup of the isometry group of Isom(Hn) = O+(n, 1).

2.8 Volume

In this section, we will focus on concrete computations of the volume hyperbolic simplices,
the higher-dimensional analogs of triangles and tetrahedra. The standard simplex of di-
mension k is given in Rk+1 as the convex hull of the points ei = (0, . . . , 0, 1, 0, . . . , 0) with
the 1 being the in ith slot. This can be expressed as

∆k = {(t0, . . . , tk) ∈ Rk+1 : ti ≥ 0,
∑

ti = 1}.

Any polyhedra can be subdivided into simplices, so understanding these volumes gives a
complete method of volume calculation. We will use the word volume to mean the volume
in any number of dimensions. In particular, hyperbolic volume in dimension two is the
area, and we use these terms interchangeably. Those of most interest will be the ideal sim-
plices whose edges are at infinity. A fundamental notion in hyperbolic geometry that sep-
arates it from plane geometry is that the volumes of simplices are determined uniquely by
their shape; there is no concept of scaling the shape. While in flat geometry, we have a no-
tion of similar triangles, two triangles that have all the same angles, but not the same area.
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This cannot occur in the hyperbolic setting as stretching will distort the angles; there is no
way to zoom in on hyperbolic space. In a hyperbolic triangle or tetrahedron, the volume is
uniquely determined by its angles or dihedral angles, respectively.

2.8.1 Two dimensions

Theorem 2.8.1 (Angle defect). The area of a hyperbolic triangle with angles α, β, and γ is
the angle defect π − α− β − γ. Notably, the area of any ideal triangle is π.

Proof. Using the triply-transitive property of PSL(2,R), we can assume the ideal triangle
has vertices at ±1 and ∞, so the area can be computed by integrating

K =
∫ 1

−1

∫ ∞
√

1−x2

1
y2 dydx =

∫ 1

−1

1√
1 − x2

dx = π. (2.26)

Assume that a triangle has a single vertex at ∞, so it has two vertical sides and a semi-
circular arc of radius 1 connecting them . Assume that these vertical sides have x coordi-
nate given by a < b. Therefore, the area looks like the above integral, but over the region
x ∈ [a, b]. In this setting, we get a similar integral, but the domain of x changes, so we can
compute

K =
∫ b

a

∫ ∞
√

1−x2

1
y2 dydx =

∫ b

a

1√
1 − x2

dx,

and here a and b can be given by their angles with which they meet the vertical lines,
which we will call α and β (see Figure 2.12). These are the same angles that correspond
to the (minimal) angle between the radius connecting the vertices to the origin and the x-
axis. This is the minimum of the argument and π minus the argument. We can set x =
cos(θ), and then this area is computed as

K =
∫ β

π−α
− sin(θ)√

1 − cos2(θ)
dθ = π − α− β

as expected.
The final case is given a triangle with vertices at interior points of H2, we can compute

its area as a difference. Take a triangle and extend one of its sides to an infinite geodesic,
and we see the difference of areas depicted below in Figure 2.13.

2.8.2 Three dimensions

Ideal tetrahedra are parameterized by Euclidean triangles up to similarity. Without loss
of generality, we can allow one vertex to be at ∞ in H3. We can then take the link of the
vertex v = ∞ which is the intersection with a horocycle, which will be any plane parallel
to {x3 = 0}. Therefore, the intersection of this link with the tetrahedron is a Euclidean
triangle with angles α + β + γ = π, which are the adjacent dihedral angles of the ideal
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Figure 2.12: The solid black lines form an ideal triangle with a single vertex at infinity in Hn. Let the two
vertices be complex numbers of unit length with arguments α and β. The picture shows that the angles made
between the tangent lines to the circle and the vertical edges of the hyperbolic triangle are also α and β.

Figure 2.13: Given a triangle with angles α, β, γ, the side between the angles α and β can be extended to
infinity. We get two triangles of the form above. Call the unlabeled angle δ. The area of the large infinite trian-
gle is π − α − β − δ. The area of the smaller infinite triangle is γ − δ. Therefore, the area of the finite triangle
is their difference, which is π − α − β − γ, proving the claim.
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Figure 2.14: We show an ideal tetrahedron in H3 with one vertex at ∞. The link of the ideal tetrahedron is
seen to be Euclidean triangle, showing that triples of adjacent dihedral angles sum to π.

tetrahedron. Here, adjacent dihedral angles are triples of angles that all border a single
vertex.

There are four 3-tuples of such dihedral angles. We can label dihedral angles as opposite
if they are the pairs of angles between pairs of disjoint vertices. Label the dihedral vertices
opposite α, β, γ as α′, β′, γ′. Therefore, applying the above argument gives equations

α + β + γ = π

α + β′ + γ′ = π

α′ + β′ + γ = π

α′ + β + γ′ = π

and we can equate the sum of the first two equations and last two, showing that α = α′, so
the same follows for the other pairs. Therefore, α+ β+ γ = π defines the ideal tetrahedron.

Definition 2.8.2 (Lobachevsky function). We define Λ(x) to be a periodic function called
the Lobachevsky function, defined by the integral below and graphed in Figure 2.15.

Λ(x) = −
∫ x

0
log |2 sin t| dt
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Figure 2.15: The Lobachevsky function is periodic.

shown below in Figure 2.15.

Theorem 2.8.3 (Volume of ideal tetrahedron). The volume of an ideal hyperbolic tetrahe-
dron with dihedral angles α + β + γ = π is given by Λ(α) + Λ(β) + Λ(γ).

We refer the reader to Ratcliffe [Rat94] for a proof of this theorem. The techniques in-
volved in this proof are not used further in this paper, so it is omitted. The main idea is
to do a similar integration as in the two-dimensional case, but the base is a sector of a
sphere, so it is more complicated. The main result we will use is that this is maximized
for a tetrahedron with all dihedral angles π

3 .

2.8.3 Higher dimensions

The property of the maximal simplex being regular, fully symmetric, is true in higher di-
mensions, but was not known until 1981. This result can generalize Gromov’s proof of
Mostow rigidity to all dimensions n ≥ 3; the techniques developed are not utilized else-
where in this paper, so this is presented in Appendix A. Notably, this will cover the above
case in dimension three and prove the necessary result that the ideal regular simplex is of
maximal volume.

2.9 Riemann Surfaces

“The Uniformization Theorem - the grand-
daddy of all hyperbolic geometry”

-John Hubbard [Hub06]

The rigidity of hyperbolic manifolds is a phenomenon of higher dimensions, and this fail-
ure of rigidity for Riemann surfaces is captured, for example, by the moduli space Mg. We
have already seen this in Examples 2.5.12 and 2.5.13, which indicated the flexibility to con-
struct Riemann surfaces and the dimension of the moduli space Mg. The uniformization
theorem in dimension two is stronger than the classification of higher dimensional space
forms, Theorem 2.7.1, because it states that every Riemann surface can be endowed with
a CSC metric, while in higher dimensions, not every manifold can be given such a CSC
metric.
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Theorem 2.9.1 (Uniformization for Riemann Surfaces). A connected and simply connected
Riemann surface is isomorphic to C, P1 the Riemann sphere, or B, each of which carries a
canonical metric of constant curvature.

These Riemann surfaces cannot be isomorphic to each other. The Riemann sphere is
compact. Any holomorphic map f : C → B is bounded and entire, and therefore constant,
so there cannot exist an isomorphism between C and B (and therefore H). Any open set
in C carries a complex structure induced by C. If U ⊊ C is connected and simply con-
nected, uniformization enforces that U must be isomorphic to either C or B since it is not
compact. If U is bounded, it must be isomorphic to B from the same argument that any
map C → U would be constant by Liouville’s theorem. It turns out that even if U is not
bounded, it is still isomorphic to B and not C, which combined with the above is the state-
ment of the Riemann mapping theorem.

Theorem 2.9.2 (Riemann mapping theorem). Let U ⊊ C be a connected and simply con-
nected open region. There exists a biholomorphism f : U → B. Furthermore, we can make
this a pointed map so that for any p ∈ U there exists a biholomorphism f : (U, p) → (B, 0).

For the proof of the Uniformation theorem for Riemann surfaces, we direct the reader
to [Hub06] or any comprehensive textbook on complex analysis. Assuming the classifica-
tion of simply connected space forms Theorem 2.9.1, it would be sufficient to show a single
biholomorphic map from U to any bounded region. Since U is not all of C and simply con-
nected, there must be at least two points a, b ∈ C \ U . Consider the function f(z) = z−a

z−b
.

Translating U such that 0 6∈ U , a choice of a branch of the square root gives two disjoint
regions V and −V . Suppose for the sake of contradiction they were not disjoint. This
would imply there exists some ζ ∈ V ∩ −V . V and −V are given by exponentiating the
integral 1

2
df ′

df
. If the branches agreed at a point, this would violate the well-definedness of

this integral, so they must be disjoint. Explicitly, we can take log(U) and know that this
is a one-sided inverse to exp, meaning exp(log(z)) = z for all z ∈ U . To compute any
value, it is given by log(ζ) = log(z0) +

∫ ζ
z0

dz
z

. By hypothesis, U is simply connected, so this
integral is well-defined by just the endpoints. The square root is defined as exp(log(z)/2).
Pick a point p ∈ −V and the function 1√

z−p
is bounded and biholomorphic.

Applying the uniformization theorem above would prove the Riemann mapping theorem
2.9.2, although it is a bit overkill and can be done using the Arzela-Ascoli theorem and the
setup above.

Proof of Riemann mapping theorem 2.9.2. Consider all univalent (holomorphic and injec-
tive) functions f : (U, p) → (B, 0) such that |f ′(p)| > 0. The above discussion shows that
this class of functions is non-empty. We can scale the function f so that f ′(p) is real by
multiplication by e−iθ for θ = arg(f ′(p)). The claim is that the function, normalized to
have f ′(p) real, with the maximum value of f ′(p) is indeed a Riemann mapping.
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It is a priori unclear that this is well-defined, but follows since this family of functions is
a normal family. The derivative of f can be computed using the Cauchy integral formula

f ′(z) = 1
2πi

∫
∂B(z,r)

f(ζ)
(z − ζ)2dζ (2.27)

and this gives an estimate on the derivative of f as 1
r

times the maximum of f in the ball.
Looking at a small disk around z, the largest the radius could be is the distance to the
boundary of U . In this setting, |f | < 1, since the image lies in B and the estimate gives

|f ′(z)| ≤ 1
d(z, ∂U)

. (2.28)

This equations tells us that the derivatives of any univalent function into the disk are
bounded, which gives equicontinuity of the functions by the mean value theorem. Apply-
ing the Arezela-Ascoli theorem states that any sequence of such functions fn has a subse-
quence converging uniformly on compact sets. Furthermore, the derivatives also converge
on compact sets as seen by Cauchy’s theorem 2.27 and therefore, the limit is indeed holo-
morphic.

Labeling this limit point f , it must be shown that this is a univalent function with im-
age in the unit disk as well. Suppose otherwise; let a 6= b ∈ U be two points such that
f(a) = f(b). Consider a ball B(a, ε) such that ε < |a − b| and the boundary ∂(a, ε) has
no zeros of f(z) − f(b). Since f is holomorphic, this is possible as the zeros are discrete,
so their radii from a are discrete values as well. The argument principle states that the
integral

1
2πi

∫
∂B(a,ε)

d(log(f(z) − f(b)))dz ∈ Z (2.29)

counts the number of values of f(b) contained in B(a, ε), (minus the number of poles, but
there are none). Since f(a) = f(b), this value must be at least 1. However, this function
takes only discrete values, so it must be the same when passed under limits of fn → f
that were univalent functions in the domain analyzed. However, these fn are injective,
so they must have this integral exactly 1, and thus so does f , so f too must be injective.
This would fail if f were constant, but that will not matter since the choice of f will be
the one with maximal derivative, (and we showed that there exists functions with non-zero
derivative at p), so f will not be constant, and thus injective.

Consider a sequence of functions fn → f that achieves this maximum. The claim is that
f is surjective onto B. Suppose for the sake of contradiction that this were not true. Let a
be a point missed by f , a ∈ B \ Im(f). The points

w1 = z − a

az − 1
⇝ w2 =

√
w1 ⇝ b =

√
a ⇝ w3 = w2 − b

bw2 − 1
(2.30)

are a composition of functions that does as follows: Firstly, w1 takes the point a to 0 via a
Möbius transformation. Then w2 takes the square root with a chosen branch. Since 0 was
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not in the image of w1, this branch is well-defined as detailed above. Then w3 undoes this
and moves the image back to the unit disk via another Möbius transformation. The idea
here is that this composition of functions increased the derivative. Therefore, f could not
have been the function with maximal derivative completing the theorem.

The fact that the derivative here increased is either a consequence of the Schwartz lemma,

or can be directly computed using the fact that a Möbius transformation A =
(
a b
c d

)
has

derivative A′ = ad− bc

(cz + d)2 . The composition of all the functions above is a map F : B → B,

and therefore the Schwartz lemma states that |F ′(0)| < 1, since it is not a rotation. The
function g = F ◦ f is such that g′(0) = F ′(f(0))f ′(0), implying that f ′(0) < g′(0), a
contradiction. The computation states

g′(0) = dw3

dw2

∣∣∣
w2=b

dw2

dw1

∣∣∣
w1=a

dw1

dz

∣∣∣
z=0

f ′(0)

= 1
|b|2 − 1

1
2b

(|a|2 − 1)f ′(0)

= |b|2 + 1
2b

f ′(0) since |a|2 = |b|4.

(2.31)

Since |b| < 1, this tells us that g′(0) > f ′(0).

2.9.1 Flexibility of Riemann surfaces

The uniformization theorem for Riemann surfaces helps classify them and gives the special
result that any Riemann surface carries a canonical metric of constant curvature. Most
Riemann surfaces are hyperbolic. For example, in the compact setting, the classification
of surfaces says that all compact Riemann surfaces are diffeomorphic to a sphere, torus,
or higher genus surface diffeomorphic to a connected sum of tori. These have metrics of
constant curvature that are positive, zero, and negative, respectively. This can be seen by
the Gauss-Bonnet formula and their Euler characteristics. A genus g Riemann surface Σg

has Euler characteristic 2 − 2g, which is positive for g = 0, zero for g = 1, and negative
otherwise.
Example 2.9.3 (Metrics of constant curvature on an annulus). For the non-compact case,
annuli give a counter-example to rigidity. Consider C∗ with fundamental group Z. Let’s
consider how to endow it with the three possible geometries in the most obvious manners.
It could be considered as having a round metric C∗ = P1 \ {0,∞} with the induced round
metric as a submanifold of S2. It could also be endowed with a flat metric similarly as a
subset of C. Lastly, it can be endowed with a a metric of negative curvature by taking the
point reiθ and mapping it to

(
1 − 1

1+r2

)
eiθ and giving it the induced metric from the hy-

perbolic disk.
These show three ways to give the same underlying structure a metric of positive, zero,

and negative constant curvature. The question now is which one of these metrics is correct,
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and why does this not violate the space form classification Theorem 2.7.1? The answer is
none of them would be the canonical metric. They do not violate the space form classifica-
tion Theorem 2.7.1 because none of these metrics are complete.

In order to endow a space with the proper metric of constant curvature, the map from
one of P1,C, or H must be a covering map, which none of the above are. The correct ex-
ample would be to use the exponential map as the covering map exp : C → C∗, demon-
strating that this space has the natural structure of a flat metric. We can see this as C/Z
with Z generated by the map z 7→ z + 2πi.

This motivates studying other annuli, notably the annulus B∗ and A(R) = {z ∈ C :
1 < |z| < R}. The example of the exponential as a covering motivates how to endow these
with metrics of constant curvature as well. The difference between these annuli and C∗ is
that their preimages under exponential map are no longer all of C. The preimage of the
exponential map of A(R) consists of points z such that 0 < Re(z) < logR, and this is
a covering map as the imaginary part differs by 2πi. By applying the Riemann mapping
Theorem 2.9.2, this must then be isomorphic to B and these annuli are endowed with a
hyperbolic metric. The last case is B∗, which can be thought of as A(∞).

Proposition 2.9.4 (Isomorphism classes of annuli). Every annulus is conformal to C∗,B∗ or
A(R) for some R. Furthermore, A(r) is isomorphic to A(R) if and only if r = R.

In particular, this shows a failure of rigidity as the different annuli above are not con-
formal to each other, but each has the same fundamental group, namely Z, and A(R) and
B∗ are hyperbolic. This shows already a flexibility of hyperbolic structures on the under-
lying topological space. We can measure this flexibility by the length of the geodesic that
generates the fundamental group.

Proof. Let A be an arbitrarily annulus, that is, a region that separates P1 into two disjoint
components. Let 0 be one of these components and ∞ in the other. This considers A ⊂ C
and the fundamental group of A is generated by a loop that goes around the origin. As
above, we take Ã = log(A) the region that is the preimage of A under the exponential
map, and this is a covering space. The preimages of a certain point differ by 2πin. This re-
gion is simply connected, so it is either all of C, and A = C∗, or via the Riemann mapping
theorem, conformal to H. This realizes A as the quotient Ã/Z since the deck transforma-
tions are the group Z. This can be realized as some g ∈ Aut(H) and given then as H/〈g〉
the unit disk modulo the group generated by an infinite cyclic group generated by some
automorphism with infinite order. Fix g(∞) = ∞ without loss of generality. If this is the
only fixed point, i.e., g is parabolic, then g can be further assumed to be g(z) = z + 1. In
this case, A = H/〈g〉 is B∗ via the exponential map exp(2πiz). Otherwise, g has a second
fixed point, it is hyperbolic, and g can be realized as g(z) = λz for λ > 1. The exponen-
tial map exp(2πi log(z/λ)) gives an isomorphism to the annulus { 1

R
< |z| < 1}, which

composed with the conformal inversion map 1
z

puts it in the form as above.
To show that A(r) ∼= A(R) are conformal equivalents if and only if r = R, consider a

map f : A(r) → A(R) that takes the unit circle to itself. The Schwartz reflection principle
can then be used to extend to a map f : B(0, r) \ {0} → B(0, R) \ {0} since it can be
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reflected through the circle to get closer and closer to the origin and the value along each
circle of reflection takes values in S1, satisfying the criteria to apply Schwartz reflection.
Similarly, it can be reflected outside the circle of radius r since it takes values in the circle
of radius R. This extends f : C∗ → C∗, so it must be some map z 7→ az and by the rigidity
of conformal functions, r = R.

2.10 Geometric topology

As per Mostow rigidity, there is no moduli of hyperbolic structures on a single manifold,
or it is trivially a single point. There is a construction called the geometric topology which
topologizes all the hyperbolic manifolds of finite volume in dimension three, (specifically
including all hyperbolic link and knot complements). It can be constructed in two main
ways: the first, which we present here, uses the Gromov-Hausdorff metric, and the second
by quantifying a measure of minimal Lipschitz continuity.

2.10.1 Gromov-Hausdorff distance

Definition 2.10.1 (Hausdorff Distance). Given U, V ⊂ X a metric space, we define the
Hausdorff distance between U and V as

dX
H(U, V ) = inf{ε : V ⊂ Bε(U), U ⊂ Bε(V )}. (2.32)

Definition 2.10.2 (Gromov-Hausdorff Distance). We define the Gromov-Hausdorff distance
between two metric spaces X and Y as

dGH(X,Y ) = inf
Z

{dZ
H(φ(X), ψ(Y )} (2.33)

for all possible metric spaces Z and all isometric embeddings φ and ψ.

Lemma 2.10.3. Let Z = X t Y and let dZ be a metric on Z that agrees with the metrics on
X and Y separately. Then,

dGH(X,Y ) = inf
dZ

{dZ
H(X,Y )}.

Proof. Let d′ be the the metric described in the lemma above on Z = X t Y . By definition
of Gromov-Hausdorff distance, we know that dGH(X,Y ) ≤ d′

H(X,Y ).
For every ε > 0, there exist isometric embeddings φ : X → Z and ψ : Y → Z such that

dZ
H(φ(X), ψ(Y )) ≤ dGH(X,Y ) + ε.

To see this, consider the product metric space Z × [0, ε] and the isometric embeddings
φ0 = φ× {0} and ψε = ψ × {ε}. Consider the restriction to (X × {0}) ∪ (Y × {ε}) and we
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have the desired result.

d′
H(X,Y ) ≤ dZ

H(X,Y )
= d

Z×[0,ε]
H (X,Y )

≤ d
Z×[0,ε]
H (φ(X), ψε(Y )) + d

Z×[0,ε]
H (φ0(X), ψ(Y ))

≤ ε+ dZ
H(φ(X), ψ(Y ))

≤ dGH(X,Y ) + 2ε,

(2.34)

finishing the proof.

Gromov-Hausdorff distance is a metric on the space of compact metric spaces up to
isometry. Furthermore, it is complete.

For non-compact spaces, the definition of Gromov-Hausdorff convergence is on large
compact sets. It will also be necessary to consider pointed maps.

Definition 2.10.4 (ε-Isometry). Let f : (X, x) → (Y, y) be a pointed map between two
metrized spaces. f is an ε-isometry if |dX(a, b) − dY (f(a), f(b))| < ε and Bε−1(y) ⊂
Bε(f(Bε−1(x))). That is, it only changes the distance by at most ε and it takes large balls
around x to a region around y of at most ε Hausdorff distance from the corresponding ball
around y.

The Gromov-Hausdorff distance between X and Y can be reformulated then as the in-
fimum over all ε of any ε-isometries between X and Y . For non-compact spaces, Gromov-
Hausdorff convergence is defined on larger and larger balls around the basepoints.

Definition 2.10.5 (Gromov-Hausdorff Convergence for Non-compact Spaces). Let (Xn, xn)
be a sequence of pointed metric spaces. The pointed metric space (X∞, x∞) is the Gromov-
Hausdorff limit of the sequence (Xn, xn) if for any R > 0 there exist Ri > 0 converging to
R and (BRi

(xi), xi)
GH−→ (BR(x∞), x∞).

Definition 2.10.6 (Geometric Topology). Let H be the set of all finite volume hyperbolic
3-manifolds. The geometric topology on H is given by the Gromov-Hausdorff convergence
criteria in Definition 2.10.5.

Example 2.10.7 (Convergence to punctured torus). Consider the genus two surface. There
is a unique geodesic representing the homology class that loops between the two donut
holes. Consider a sequence of genus two surfaces equipped with hyperbolic metrics such
that the length of the above geodesic goes to infinity. Furthermore, consider a fixed mark-
ing on the left side of the surface. As the distance between the two donut holes gets fur-
ther and further, the Gromov-Hausdorff limit from the marked point no longer sees the
second hole, and the limit is a punctured torus where the geometry near the puncture is a
cusp.

The fact that the geometric topology is determined over pointed spaces is an especially
important fact, as demonstrated in this example. If the basepoint were to be placed consis-
tently equidistant from both holes, the geometry would look like a tube of incredibly high
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Figure 2.16: As the distance between the two donuts increases, the limit in the geometric topology converges
to a punctured torus that has a cusp of finite volume. Figure created by Kalia Firester.

scalar curvature. If the injectivity radius, roughly half the distance around the tube, were
to go to 0, then the geometry limit would be a line, collapsing to a single dimension.

The above example indicates that hyperbolic manifolds with a single cusp are limits
of compact hyperbolic manifolds. A similar procedure can be done to show that a non-
compact hyperbolic with n + 1 cusps can be obtained as the geometric limit of a hyper-
bolic manifold with n cusps. This motivates the following theorem detailing that in three
dimensions, hyperbolic manifolds can be well-ordered by their volume.

Theorem 2.10.8 (Thurston-Jorgensen). Consider the volume function on the space of hy-
perbolic 3-manifolds of finite volume. The image forms a non-discrete set on the real line
which is well-ordered and of cardinality ωω, for ω the first infinite ordinal. While the vol-
ume function is not injective, it is close to injective and is finite-to-one, i.e., there are only
finitely many hyperbolic manifolds of a given finite volume.

What this theorem says is we can order the hyperbolic manifolds according to their vol-
umes. Firstly, there is a manifold of smallest volume x1. Then, there is a next smallest
volume x2 > x1 and so on. These volumes have an accumulation point x1 < x2 < · · · < xω.
This number turns out to be the volume of a complete, but non-compact, hyperbolic man-
ifold which has a single cusp. This pattern continues, and for example, x2ω will be the
next smallest non-compact hyperbolic volume. These points eventually accumulate at
xω2 , which continuing the pattern, represents the smallest volume of a hyperbolic manifold
with two cusps.

Using this, we can represent A0 to be the compact hyperbolic manifolds. The image
under the volume map of A0 are the points x1, x2, x3, . . .. We iteratively define Ai+1 as the
closure of Ai. This can be seen in Figure 2.16, where we see that a single cuspidal torus is
the limit of compact hyperbolic manifolds in the geometric topology.
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2.10.2 Dehn filling

A Dehn filling, or Dehn surgery, is a method to construct further hyperbolic manifolds
from a given finite volume hyperbolic 3-manifold. This procedure shows the abundance of
hyperbolic 3-manifolds, as most Dehn fillings are hyperbolic manifolds, a theorem due to
Thurston. If you remove a solid torus representing the link of a cusp, you can fill it back
in non-trivially by twisting it by (p, q), i.e. inducing the map (p, q) as Z2 → Z2 on the
fundamental group of the boundary torus where p and q are coprime. We use the notation
(∞,∞) for the identity in both directions, and a single (∞, q) or (p,∞) to be the iden-
tity in only one direction. Let M(p1,q1),...,(pn,qn) be the Dehn surgery on M with n bound-
ary components, such that on the ith cusp, we perform Dehn surgery with Dehn invariant
(pi, qi). Notably, M(∞,∞),...,(∞,∞) ∼= M .

Theorem 2.10.9. Only finitely many M(p1,q1),...,(pn,qn) are not hyperbolic. Furthermore, as
p2

i + q2
i → ∞ for all i, M(p1,q1),...,(pn,qn) → M in the geometric topology.

For example, the figure eight knot complement, see below in Section 2.11, has only 6
exceptional Dehn surgeries that are not hyperbolic. We refer the reader to Chapter 4 of
Thurston [Thu79] and Thurston [Thu82] for more details.

2.11 Knot complements

Thurston’s geometrization of knot/link complements states that most such structures ad-
mit unique hyperbolic structures of finite volume.

Definition 2.11.1 (Knot/Link Complement). A knot is an embedded S1 ↪→ S3 considered
up to homotopy. That is, two knots φ, ψ : S1 → S3 are considered the same if there exists
a homotopy map F : S3 × [0, 1] → S3 such that F0 = Id and F1 ◦ φ = ψ. A link is multiple,
disjoint, embedded knots L : ⊔S1 ↪→ S3 with the same condition on equivalence.

Definition 2.11.2 (Classification of Knot/Link Complements). A knot φ : S1 ↪→ S3 is
called a torus knot if there exists an embedding of a torus ψ : S1 × S1 → S3 such that
Im(φ) ⊂ Im(ψ), i.e. the knot is contained on the surface of an embedded, but not knotted,
torus.

Consider V = S1 × D2 a solid torus. A knot φ : S1 ↪→ S3 has a tubular neighborhood
that is a non-trivial (up to homotopy) embedding of f : V ↪→ S3. Suppose there exists a
knot ψ : S1 → V that is non-trivial meaning it is not contained in an embedded S3 ⊂ V ,
so it defines a non-trivial homology class, and is not isotopic to the central core S1 × {0}.
The knot φ is said to be a satellite knot if φ = f ◦ ψ, i.e. the knot is knotted on the surface
of a torus that itself is knotted in the ambient space.

A knot is said to be hyperbolic if the complement S3 \ φ(S1) admits a complete finite
volume hyperbolic metric.

It is a theorem of Thurston that these are all the possible types of knots and they are
disjoint.
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Figure 2.17: The gluing pattern for two ideal tetrahedra to create the figure eight knot complement.

Theorem 2.11.3 (Thurston). Every knot is either a torus knot, a satellite knot, or hyper-
bolic. Furthermore, these definitions are disjoint.

Example 2.11.4 (Figure eight knot complement). The complement of the figure eight knot
will be constructed as the gluing of two ideal tetrahedra. Notably, it will be a non-compact
hyperbolic manifold with volume 6Λ(π/3) ≈ 2.02988, which is the smallest volume for a
hyperbolic knot/link complement.

Let T and T ′ be two ideal tetrahedra. Firstly, by viewing these in H3, this can be viewed
as having a vertex at ∞ and three vertices forming an equilateral triangle in the boundary
C, points where x3 = 0. We can label them 1, ω, ω2 for ω a primitive cube root of unity.
The geodesics connecting the points form three vertical semicircles and three vertical lines.
A large horosphere centered at ∞ is a horizontal plane x3 = R, which intersects this at an
equilateral triangle. Therefore, the dihedral angles of such an ideal tetrahedron are all π/3.

We can label the sides as indicated below to define a unique gluing pattern between the
ideal tetrahedra as seen in Figure 2.17. However, viewing this as closed tetrahedra, this is
not a manifold as its Euler characteristic is one, as seen by it having a single vertex, two
1-cells, four triangles, and two tetrahedra. In order to define it as a manifold, a point must
be removed. The natural point to remove is the specified vertex whose neighborhood is the
cone of a torus. The neighborhood of the vertex is a cone over a torus, as seen by remov-
ing a small neighborhood and gluing together the triangles at the vertices along the double
arrow edges seen in Figure 2.18. The idea that the complement of the point in the figure
eight gluing diagram Figure 2.17 from the previous chapter yields a manifold motivates
that if the tetrahedra were ideal tetrahedra, that do not include the vertex, the same glu-
ing would yield a hyperbolic manifold. The idea is to find a copy of the figure eight knot
(Figure 2.19) along the edges in these tetrahedra.

Claim 2.11.5. The manifold M , as formed by gluing two tetrahedra along the gluing dia-
gram in Figure 2.17 with the vertex removed, is homeomorphic to S3 \ S1

8 where S1
8 is the

figure eight knot (see Figure 2.19).

55



c

a

b d

g

e

f h

a e c h b g d f

Figure 2.18: A neighborhood of the vertex can be seen to be a cone of a torus. Removing a small triangle par-
allel to the opposite face near each vertex, (and labeling it as the same letter), the gluing pattern is as follows
with opposite sides identified demonstrating this slice is a torus, so as these triangles approach the point, this is
a cone over this torus.

Figure 2.19: The figure eight knot. Figure created by Kalia Firester.
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Figure 2.20: The figure eight knot with two edges added to construct the knot complement as a CW complex.
Figure created by Kalia Firester.

In Figure 2.20, the knot diagram is shown with added edges (labelled 1 and 2) which
will be used to construct this knot as the complement of the ideal hyperbolic tetrahedra
glued along the pattern in Figure 2.17. To construct the figure eight knot complement as a
gluing of polyhedra, first consider the above knot diagram with the added edges between
single DNA loop-looking components. These will be the points to which 2-cells will be
glued. A 2-dimensional CW-complex will be constructed utilizing these added edges with
four cells given by the regions in the knot diagram as shown below in Figure 2.21. The
following lemma is the motivation and main tool of adding in the edges 1 and 2 in Figure
2.20.

Lemma 2.11.6 (Untwisting a DNA loop by adding a base pair). In the ambient space of S3,
the two diagrams in Figure 2.22 are isotopic.

Proof. Throughout the process of constructing hyperbolic structures on knot complements,
the DNA loop, (with the added edge that can be viewed as crossing the two strands like a
single base pair), will need to be deformed from the left image to the right in Figure 2.22.
To see this, the base pair edge can be thickened to be a ball and then the two strands can
be slid around the ball to untwist the loops. Then, the ball can be shrunk again in the
form as desired. This is shown in Figure 2.23.

Applying Lemma 2.11.6 to the cell complex described in Figure 2.20 with the 2-cells
added as shown in Figure 2.21 gives the following 2-dimensional CW-complex in Figure
2.24. Notably, since this is in S3, the cell B wraps back on itself at infinity. Therefore, the
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Figure 2.21: The four 2-cells needed to construct the 2-skeleton of the figure eight knot complement structure.
The dotted lines show how the gluing map is given for the attached 2-cell. Notably, it goes around the two
added edges, which are evidently needed to construct this. Figure created by Kalia Firester.

Figure 2.22: The two diagrams are ambiently isotopic in S3. Adding an edge that resembles a base pair if
viewed like a strand of DNA allows the figure to be reformed to the right, and simpler, image. Figure created
by Kalia Firester.

Figure 2.23: Thickening the base pair of a DNA loop to untwist it. The arrows in the second image show how
to rotate the strands to untwist them. Figure created by Kalia Firester.
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Figure 2.24: The untwisted 2-complex formed from the four cells from Figure 2.21 after untwisting the DNA
loops via the added base pair edge. Figure created by Kalia Firester.
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Figure 2.25: The attaching maps of 3-cells creating the inner and outer 3-disks in S3 \S1
8 , by gluing the 3-cells

to the faces in Figure 2.24.

complement of this complex is made up of two 3-dimensional balls D3. Considering this
inside S3 gives that this can be extended through cell attachment of these two 3-cells to
be a 3-dimensional CW-complex. These maps are seen below in Figure 2.25. Recall that
all the 2-cells were attached to go around the extra base pair added edges, labeled 1 and 2.
Figure 2.25 constructs S3 as a strange CW-complex, but by its construction, it is seen that
by removing edges 3,4,5, and 6, the resultant space is S3 \ S1

8 the figure eight knot com-
plement if the vertices were collapsed and removed. This construction, by applying this
to ideal tetrahedra, renders the removal of the vertex unnecessary, since ideal polyhedra
do not contain their vertices at infinity, and therefore gives this construction a hyperbolic
metric as desired. The volume here would be the sum of two ideal polyhedra all with an-
gles π

3 , which would be 6Λ
(

π
3

)
with Λ the Lobachevsky function. This value is roughly

2.02988.
The takeaways of this construction are as follows: Knot complements can be endoeds

with a hyperbolic structure if they are given via polyhedral gluing such that they have the
proper manifold structure, meaning that the angles need to add up correctly. Otherwise
the resultant is rather an orbifold. The DNA untwisting property is necessary, because
the resultant CW-structure without the added base pair would not be made of triangles.
Rather this would result in a 2-gon which cannot be the face of a polyhedron. Ending up
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with tetrahedra where the vertices must be removed lends itself to using ideal tetrahedra
in hyperbolic space, but is not necessary if the vertices have proper angles. Think of a Eu-
clidean torus as a square with opposite sides identified, and the vertex is kept. The end
point was tetrahedra, but if it were not, faces can be further subdivided into triangles to
achieve that.

Example 2.11.7 (Alternating knot/link complements). The above methodology can be gen-
eralized to all alternating knot/link complements. An alternating diagram means that as
you trace across each loop, it alternates going over and under itself. The strategy is similar
to the figure eight knot complement structure, so understanding the detailed construction
and methodology above will carry most of the techniques and intuition into the more gen-
eral setting.

Consider L to be an alternating knot/link diagram. Across each crossing, we can add
two vertices and a vertical crossing edge between them to make the diagram into a com-
binatorial graph. In addition to such vertices, we will also have edges connecting adjacent
links between the upper vertex on one side and the lower vertex on the other side, corre-
sponding to the property that the knot is alternating.

We will define regions in this diagram which will correspond to instructions to construct
the hyperbolic structure on the knot/link complement from ideal hyperbolic polyhedra.
Consider an n-gon P that corresponds to a region in the knot/link diagram. When consid-
ered in the above combinatorial graph, this will correspond to a 2n-gon as a combinatorial
region defined by the interior of a simple cycle in the graph. We call this 2n-gon P . We
define P ′ from P by removing the edges of P that correspond to knot/link components be-
tween adjacent crossings, and define these to be the ideal vertices of P ′. Geometrically, the
edges of P ′ are in correspondence with crossings on the boundary of P .

We define ideal polyhedra B± by giving their boundaries as ∂B±, each with a copy of
each P ′ as a face. To glue these ideal polyhedra together, we identify B+ and B− along
their boundary in P ′ along the identity map. To complete the picture, we must glue these
P ′ together, which will finish gluing the boundary sides of all the ∂B± polyhedra. The
above gluing was only partially done on the boundary pieces given by the P ′ component,
which removed some edges.

Consider adjacent regions P and Q in the knot/link diagram. Let e be the edge between
them, which goes from an undercrossing e− to an overcrossing e+, by the alternating as-
sumption. These crossings of e± relate to edges of P+ and Q+ in ∂B+ and ∂B−. This
gives the gluing construction by ∂B+ in P ′ and q′ along e− and in ∂B− in P ′ and q′ along
e+. This gives the final gluing of the boundary pieces of B+ with all the other regions.

The last components we need to handle are the 2-gons, which will be handled as above
in the figure eight knot. As we saw above, these 2-gons can be collapsed to edges and do
not alter the topology of the glued picture.

This can be applied to the Borromean rings L and to the Whitehead link, for example,
which will correspond to gluing ideal octahedra together, two for the Borromean rings and
a single one for the Whitehead link. These link complements will have hyperbolic volumes
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computable approximately 7.32772 and 3.66386, respectively. These examples can be seen
in detail in Thurston [Thu79].

2.12 Algebraic topology preliminaries

One important feature of hyperbolic manifolds is that they are Eilenberg-Maclane spaces.
An Eilenberg-Maclane space is a space K(A, n) such that

πi(K(A, n)) =

0, i 6= n

A, i = n
(2.35)

has only a single homotopy group, which is A in degree n. Because of the classification of
simply connected space forms in Theorem 2.7.1, the universal cover of a connected hyper-
bolic manifold M is contractible, (in fact diffeomorphic to Rn), so πi(M) = 0 for i ≥ 2.
Therefore, M = K(π1(M), 1) is an Eilenberg-Maclane space. Let M and N be two hyper-
bolic manifolds with the same fundamental group. Let’s call this π = π1(M) = π1(N).

Proposition 2.12.1. Let ρ : π → π′ by any group homomorphism. There exists a unique
map up to homotopy f ∈ [K(π, n), K(π′, n)] such that f∗ : πn(K(π, n)) → πn(K(π′, n)) is ρ.

Corollary 2.12.2. For M and N hyperbolic manifolds with the same fundamental group π,
any automorphism ρ of π can be realized by a map f : M → N such that ρ = f∗ is the
induced map on π1(M) → π1(N).

One final theorem will we use is the CW-approximation theorem which says that any
map can be equivalently, up to homotopy, expressed as a cellular map, i.e., a map that
respects a triangulated structure on the manifolds. CW-complexes are constructed by
adding simplices one dimension at a time. In the hyperbolic context, these simplices can
be given a geometric structure as hyperbolic. If the gluing criteria described in Section 2.5
are met, this forms a well-defined hyperbolic manifold as detailed above.

Theorem 2.12.3 (CW-approximation). Let f : X → Y be a continuous map between CW-
complexes. The map f is said to be cellular if f(X(n)) ⊂ Y (n) where X(n) and Y (n) de-
note the n-skeleton. The CW-approximation theorem says that f is homotopic to a cellular
map.

The proof of this theorem follows by induction on the n-skeleton of X and Y . The 0-
simplices can be homotopically moved to the 0-simplices on Y along the 1-simplices. For
higher dimension skeletons, we can use compactness of the simplices to similarly perturb
an n-simplex off of higher dimensional simplices in Y . We include the algebraic topology
constructions and proofs of these theorems in Appendix B and refer the reader to Hatcher
[Hat02] for more background in algebraic topology.
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3
Mostow’s proof of rigidity

3.1 Mostow’s proof overview

The first proof of Mostow rigidity shown here will be Mostow’s original proof
for compact hyperbolic manifolds. It utilizes the compactness to give an initial bound on
the modulus of continuity and produce a lift to the universal covers which is a pseudo-
isometry, i.e., it distorts distance only in a bounded manner. The end goal is to perturb
this to an isometry. While isometries take geodesics to geodesics, a pseudo-isometry gets
close enough that the image of a geodesic will be a quasi-geodesic. We will use the geome-
try of hyperbolic space to associate to any quasi-geodesic a unique geodesic from which it
lies only a bounded distance away. Therefore, our original map will associate geodesics,
just like an isometry. We then will use ergodic theory to improve the regularity of this
map on the boundary to a conformal map on the boundary sphere at infinity. As detailed
in Chapter 2 Section 2.3, such a conformal map corresponds to a unique isometry. This
will complete Mostow’s theorem by deforming the pseudo-isometry to the isometry given
by the conformal map on the boundary. In this chapter, we will first go through some in-
troductory definitions and background to define all the terms above and their relationships.
With this setup, the proof of rigidity will be quite quick and intuitive.

3.2 Pseudo-isometries and quasi-geodesics

In the context of Mostow rigidity, a given map f : M1 → M2 will be a homotopy equiva-
lence with g : M2 → M1 its homotopy inverse. Each Mi has its universal cover πi : Hn →
Mi, and the deck transformations are given by Γi ⊂ Isom+(Hn). Notably, Γ1 ∼= Γ2 since f
is a homotopy equivalence. Take f̃ to be a lift of f between the universal covers.
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Definition 3.2.1 (Pseudo-isometry). A pseudo-isometry is a map f : X → Y between
metric spaces such that there exist constants C,C ′ > 0 satisfying for all a, b ∈ X the
bound

C−1dX(a, b) − C ′ ≤ dY (f(a), f(b)) ≤ CdX(a, b). (3.1)
This says that f only changes distances in a bounded way with some error. If C = 1 and
C ′ = 0, then this is an isometry.

A key point of isometries is that they carry geodesics to geodesics. The remarkable fea-
ture of hyperbolic geometry is that in this context, this property is almost true for pseudo-
isometries. While the image of a geodesic is not a geodesic, it is in a neighborhood of a
unique one, so a pseudo-isometry still associates geodesics. To understand this associa-
tion, we define the notion of a quasi-geodesic, and in hyperbolic space, we will see that
any quasi-geodesic can be associated to the unique geodesic from which it lies within a
bounded distance.

Definition 3.2.2 (Quasi-geodesic). A quasi-geodesic is a map γ : I → X where I is an
interval (possibly all of R) and X is a metric space, such that γ is a pseudo-isometry.

The first theorem says that the lifts f̃ and g̃ between the universal covers are pseudo-
isometries.

Lemma 3.2.3. f̃ , g̃ : Hn → Hn can be made to be pseudo-isometries by perturbing f and g
up to homotopy.

Proof. By the CW-approximation theorem, we can assume that the maps f and g are cel-
lular maps, (given a cellular structure on M1 and M2). Since M1 and M2 are compact,
there exists a uniform bound supa,b∈M1 d1(a, b) < C and supc,d∈M2 d2(c, d) < C. Suppose
otherwise, a path from a, b that has infinite length gives infinitely many charts of radius
1 around points on this curve, and including also the complement of the curve to these
charts gives an open covering that cannot be reduced to a finite subcover, thereby violat-
ing compactness. This tells us that C gives a Lipschitz coefficient for both f and g, which
will lift to give that f̃ and g̃ are Lipschitz, that is,

dHn(a, b) ≤ CdHn(f̃(a), f̃(b)), dHn(c, d) ≤ CdHn(g̃(c), g̃(d)). (3.2)

Considering a, b ∈ M1 and x, y ∈ M2 to be their images, so f(a) = x and f(b) = y. Using
similar names for lifts of these points the universal covers, the Lipschitz condition gives
bounds

dHn(g̃ ◦ f̃(x), g̃ ◦ f̃(y)) ≤ CdHn(f̃(x), f̃(y)). (3.3)
Since f ◦ g and g ◦ f are homotopic to the identity, this homotopy gives a path from g ◦
f(x) to x. By compactness, this path has length bounded by some constant C ′. The same
applies to the universal cover maps f̃ and g̃, as they too are homotopy inverses and a path
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is the same length when lifted by the covering map which is a local isometry. This gives
the bound

dHn(x, y) − 2C ′ ≤ dHn(g̃ ◦ f̃(x), g̃ ◦ f̃(y)). (3.4)
By taking the max of 1 and C, this gives the first inequality in Definition 3.1 to get

C−1dHn(x, y) − 2C ′ ≤ dHn(g̃ ◦ f̃(x), g̃ ◦ f̃(y)), (3.5)

finishing the proof by replacing C ′ with C ′/2.

While an isometry maps a geodesic to a geodesic, a pseudo-isometry still associates a
geodesic to the image of a geodesic, even though it is not exactly the image.

Proposition 3.2.4 (Pseudo-isometries associate geodesics). Let F : Hn → Hn be a pseudo-
isometry with constants C,C ′ to fit the definition from Equation 3.1 and let γ be a geodesic
in H. There is a unique geodesic γ′ such that F (γ) lies in a bounded set around γ′.

Proof. Let Br(Σ) for Σ ⊂ Hn be the set of points of distance less than r to some point
in Σ. This language gives a restatement of the proposition in a stronger sense. There ex-
ists a constant r > 0 such that for every geodesic γ, there exists a unique geodesic γ′

such that F (γ) ⊂ Br(γ′). Fixing γ, it will be demonstrated that r is not actually a func-
tion of γ, and is therefore well-defined. Let a, b ∈ Hn be two points and let [a, b] be the
geodesic segment adjoining them. The image of this geodesic segment F ([a, b]) is con-
tained in Bt([F (a), F (b)]). To show this, consider first some t0 > 0 such that cosh t0 = C2 +
1 (see Lemma 3.2.5 to motivate this choice of constant). Consider some geodesic segment
[x, y] that is contained in [a, b] ∩ F−1(Bt0([F (a), F (b)])). The distance dHn(F (x), F ([a, b]) =
dHn(F (y), F ([a, b])) = t0. Let πγ be the orthogonal projection to the geodesic γ.

Lemma 3.2.5. Let a, b be two points at distance t from a geodesic γ. Then, dHn(a, b) ≥
cosh(t) · dHn(πγ(a), πγ(b)).

Geometrically, this lemma says that the distance between points t away from a geodesic
grows exponentially.

Proof. We work in the hyperboloid model of hyperbolic space. Here, we can represent γ
as the intersection of Hn and a linear plane (two dimensional) L through the origin inside
of Rn,1. We can denote W as the orthogonal space to L with respect to the Minkowski
signature (n, 1) metric, and let S be the unit sphere in W . We denote the tubular region
of distance r from γ by Cr(γ) inside Hn.

We define a one-sided inverse map to πγ which takes a point on γ and a direction from
S into Cr(γ) by

ω : γ × S → Cr(γ), ω : (u,w) 7→ cosh(r)u+ sinh(r)w,

which is a diffeomorphism from the characterization of geodesics in the Minkowski model
(see Remark 2.1.6).
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Consider now u′ ∈ L and w′ ∈ W , and we can compute the hyperbolic distance com-
posed with this map at the point (u′, w′) ∈ L×W as

d(u′,w′)ω(u′, w′) = cosh(r)u′ + sinh(r)w′

and take its norm to get

‖d(u′,w′)ω(u′, w′)‖ = cosh2(r)‖u′‖ + sinh2(r)‖w′‖ ≥ cosh2(r)‖u′‖.

This gives the desired inequality

d(ω(u1, w1), ω(u2, w2)) ≥ cosh(r) · d(u1, u2)

completing the proof.
For another approach, as in many cases in hyperbolic geometry, we can consider the

plane going through the geodesic and a third point p, and we can reduce to studying the
two-dimensional case. Here, we can consider the simplified question where γ is the imagi-
nary axis and π is the projection map to it. We can rescale our points such that π(p) = i.
Therefore, we want to travel along the geodesic that is the upper half of the unit circle in
C. This is parameterized by t 7→ tanh(t)+i sech(t). From Example 2.1.7, we know that the
imaginary part of p must be sech(r). As in that example, the path that takes any point to
the imaginary axis is a half-circle centered at 0. Therefore, we know that in the Euclidean
metric, we have that ‖dπ‖ = 1, because π maps points along spheres of the same radii,
so the conformal factor in switching to the hyperbolic metric is the ratio of the imaginary
parts of π(p) and p, which we can compute as

Im(π(p))
Im(p)

= 1
sech(r)

= cosh(r)

as desired.

Applying this lemma and utilizing the triangle inequality gives the following.

C−1dHn(x, y) − C ′ ≤ dHn(F (x), F (y))
≤ dHn(F (x), πγ(x)) + dHn(πγ(x), πγ(y)) + dHn(πγ(y), F (y))

≤ 2t0 + dHn(F (x), F (y))
cosh t0

≤ 2t0 + C

C2 + 1
dHn(x, y).

(3.6)

This gives us a bound λ on the length of the component [x, y], as given by

dHn(x, y) ≤
(
C−1 − C

C2 + 1

)−1
(C ′ + 2t0) = λ. (3.7)
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Set r = t0 + Cλ + 1, which is independent of γ, and depends only on the constants C and
C ′ which were given by the pseudo-isometry criteria of F , as desired. For any x along the
path [a, b], either F (x) ∈ Bt0(F ([a, b])) or it is not. Notably, Bt0(F ([a, b])) ⊂ Br(F ([a, b])).

For F (x) 6∈ Bt0(F ([a, b])), let [p, q] be a geodesic segment such that

x ∈ [a, b] ∩ F−1(Bt0([F (a), F (b)])).

A bound on F (x) from [F (a), F (b)] is given to be below r as follows:

dHn(F (x), [F (a), F (b)]) ≤ dHn(F (x), F (p)) + dHn(F (p), [F (a), F (b)])
≤ CdHn(x, p) + t0

≤ CdHn(p, q) + t0

≤ Cλ+ t0

≤ r

(3.8)

so, in either case, the subset

F ([a, b]) ⊂ Br([F (a), F (b)]), (3.9)

which is the image of a geodesic that is contained in a small ball around the geodesic be-
tween the images of endpoints.

We now show that F is a proper map, meaning the preimage of any compact set is com-
pact. Consider some sequence qi in γ converging to one of the end points, i.e., going to
infinity in one direction. The sequence F (qi) diverges as well in Hn. However, it has a well-
defined limit point on the sphere Sn−1

∞ = Hn. Suppose otherwise, let F (q′
i) and F (q′′

i ) be
two subsequences that converge to different points in Hn. There exist indices i, j � 0 suf-
ficiently large such that q′

i ∈ [q′′
0 , q

′′
j ] and F (q′

i) 6∈ Br([F (q′′
0), F (q′′

j )]) violating the previous
conclusion 3.9. This is to say that these paths go to infinity, so since they stay within a
bounded neighborhood of the endpoints, they cannot diverge to different points at infinity.

Let pi and qi be sequences converging to the opposite ends of γ as points on the sphere
at infinity. Let p∞ and q∞ be the distinct points on Hn to which F (pi) → p∞ and F (qi) →
q∞ converge. Let α be the geodesic with p∞ and q∞ as its endpoints. Let γi = [F (pi), F (qi)]
be the geodesic segment interpolating between F (pi) and F (qi). Since pi → p∞ and qi →
q∞, on some compact set K ⋐ Hn, the distance limi→∞ supx∈γi∩K d(x, α) = 0. Take some
point x ∈ γ and let K = Br+1(x). For i � 0 sufficiently large, the following bound holds:

dHn(F (x), α) ≤ inf
y∈γi∩K

(dHn(F (x), y) + dHn(y, α))

≤ inf
y∈γi∩K

dHn(F (x), y) + sup
y∈γi∩K

dHn(y, α)

≤ r + sup
y∈γi∩K

dHn(y, α).

(3.10)

Taking the limit as i → ∞, this shows that dHn(F (x), α) ≤ r. If we replace r with r + 1,
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then γ′ in the proposition statement can be realized as α and is unique by its definition
given by its endpoints at infinity.

3.3 Quasi-conformal maps

We will define and state some properties of a well-behaved class of functions called quasi-
conformal maps. Conformal maps have the property that they preserve angles, and quasi-
conformal maps only distort angles in a bounded manner. As detailed in Chapter 2 in The-
orem 2.3.1, the conformal maps on the boundary Sn−1

∞ are in bijection with isometries on
the interior Hn. Therefore, we want to associate quantities to pseudo-isometries on the in-
terior. These will be the quasi-conformal maps on the boundary. Notably, this correspon-
dence will not be a bijection, as we will see that pseudo-isometries are a priori only quasi-
conformal at the boundary, but due to the ergodicity of the geodesic flow, will actually be
conformal. Therefore, a pseudo-isometry and an actual isometry can both correspond to
the same conformal map on the boundary, which will provide the instructions to perturb
the pseudo-isometry to the unique isometry.

Definition 3.3.1 (Quasi-conformal). Let f : X → X is a homeomorphism of a metric space
to itself. It is K-quasi-conformal if for all z ∈ X

lim
r→0

supx,−x∈B(z,r) d(f(x), f(−x))
infx,−x∈B(z,r) d(f(x), f(−x))

≤ K (3.11)

for x and −x antipodal points on the ball of radius r around z. f is called quasi-conformal
if it is K-quasi-conformal for some K. If K = 1, then it is conformal. What this measures
is the maximum distortion, as measured by eccentricity, of smaller disks at any point in
X. Because angles are defined locally, any stretch that preserves angles cannot have any
eccentricity, so the notion of 1-quasi-conformal being conformal is indicating the angle pre-
serving feature of conformal maps.

There are two main theorems from the theory of quasi-conformal maps which we will
use. The first is a differentiability result, and the second is a regularity condition as to
when a quasi-conformal map is conformal.

Theorem 3.3.2. A quasi-conformal map f : M → M for M a manifold of dimension at
least two has a derivative almost everywhere.

This theorem follows mainly from two facts in real and complex analysis: the first is
that any quasi-conformal map is absolutely continuous on lines, meaning that we have a
uniform modulus of continuity on any line segment L contained in M , which will give the
existence of all the partial derivatives. Sometimes this is given in the definition of a quasi-
conformal mapping. The second main tool in the proof is Egorov’s theorem which takes
the existence of partial derivatives and shows that almost everywhere, they combine to
give total differentiability.
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Theorem 3.3.3. A quasi-conformal map whose derivative is conformal almost everywhere is
conformal.

In the two-dimensional case, locally conformality is given by holomorphic, so we can
take C or C ∪ {∞} which exactly aligns with the hyperbolic boundary in H3. Here, con-
formal is given equivalently by the Cauchy-Riemann equations, or φ is conformal if and
only if ∂φ = 0. If φ is K-quasi-conformal, then there is an inequality given by

|∂φ| ≤ k|∂φ|, k = K − 1
K + 1

where ∂ and ∂ are the derivatives with respect to z and z in the complex setting. In this
case, we see that if the left-hand side vanishes almost everywhere, k can be made to be 0,
so integrating this result will imply that K = 1 and φ is indeed conformal.

For further details and complete proofs of these theorems, we refer the reader to Chap-
ter 2 in Ahlfors [Ahl06].

3.4 Ergodicity

The main result we will use in Mostow’s proof of rigidity is the ergodicity of the geodesic
flow on hyperbolic manifolds. Intuitively, this means that generically integrating along
geodesics in M will approximate behavior of functions over all of M .

Definition 3.4.1 (Measurable action). Let G be a group acting on (X,µ) a (finite) measure
space. We say that G is measure class preserving if for all measurable sets A, µ(A) = 0 if
and only if µ(gA) = 0. This is because two measures are said to have the same measure
class if their measure zero sets agree.

The action of G is further said to be measure preserving if for all measurable sets A, the
measure is preserved by all G: µ(A) = µ(gA).

We can now define the notion of ergodic for such actions.

Definition 3.4.2 (Ergodic). A measure class preserving action G on (X,µ) is ergodic if any
G-invariant measurable subset A ⊂ X has either full or zero measure; that is µ(A) = 0 or
µ(X \ A) = 0.

What this says is that we can use the action of G to estimate behavior over all of X. If
G acts in a measure preserving manner, then G induces a unitary action on L2(X,µ) via
composition with g−1, that is, each g ∈ G acts by

g : L2(X,µ) 3 f 7→ f ◦ g−1.

We can now characterize an ergodic action equivalently by saying the only L2-invariant
functions are constant (almost everywhere).
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Theorem 3.4.3 (Ergodic ⇐⇒ invariant functions are constant). Suppose that (X,µ) is
a finite measure space, so µ(X) < ∞. A measure preserving action G is ergodic if and
only if the G-invariant functions in L2(X,µ) are exactly those that are constant almost
everywhere.

Proof. The proof follows mainly by unpacking the definitions. First, suppose that the ac-
tion is not ergodic. The obstruction is therefore some subset A with non-zero measure,
µ(A) > 0 and µ(X \ A) > 0 that is G-invariant. Take the function χA which is a G-
invariant function that is not constant almost everywhere.

For the other direction, suppose that the action of G is ergodic. Given an L2 function f
which is G-invariant, consider the set

Ar = {x ∈ X : f(x) > r}.

The measure µ(Ar) must go from µ(X) to 0 as r varies along R. If f is constant almost
everywhere, then this jump happens at the value r for which f achieves almost everywhere.
Otherwise, there must exist some Ar such that 0 < µ(Ar) < µ(X). This Ar would be
G-invariant and therefore produce an obstruction to the ergodicity of the action.

The critical piece of ergodic theory used to prove the ergodicity of the geodesic flow is
the von Neumann ergodic theorem which states that ergodic actions approximate integra-
tion on the measure space.

Theorem 3.4.4 (von Neumann Ergodic theorem). Let G = R be a continuous ergodic
action on (X,µ) a finite measure space. Let F ⊂ L2(X,µ) be the G-invariant functions,
which is a closed subspace since G acts by a unitary action. Let P : L2(X,µ) → F be the
orthogonal projection operator with respect to the L2 inner product.

The integral of f under the action of G approximates Pf in that

Pf = lim
T →∞

1
T

∫ T

0
t · f dt (3.12)

for t considered an element of G = R.

Proof. First we characterize conditions for a function f to be G-invariant, or what func-
tions exactly F composes. Consider f ∈ F and h ∈ L2(X,µ) generic. Let 〈−,−〉 be the L2

inner product. We can take an element in the subspace 〈f, h − t · h : ∀t ∈ G, h ∈ L2(X,µ)〉
and examine its pairing with f . It is sufficient by linearity to let this be of the form h−t·h
and we compute this inner product as

〈f, h− t · h〉 = 〈f, h〉 − 〈f, t · h〉
= 〈f, h〉 − 〈(−t) · f, h〉 G acts unitarily
= 〈f, h〉 − 〈f, h〉 f is G− invariant
= 0,
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which shows that all functions in 〈h − t · h〉 are orthogonal to F with 〈· · ·〉 denoting the
linear span of the elements.

We show that this is the full orthogonal complement to F . Suppose that f is orthogonal
to 〈h − t · h : h ∈ L2(X,µ), t ∈ G = R〉 and let h ∈ L2(X,µ) be arbitrary. Computing the
inner product 〈f − t · f, h〉 yields

〈f − t · f, h〉 = 〈f, h〉 − 〈t · f, h〉
= 〈f, h〉 − 〈f, (−t) · h〉 G acts unitarily
= 〈f, h− (−t) · h〉
= 0

showing that f ∈ F .

We now show Equation 3.12 for functions f ∈ F . Here we use that Pf = f , so we must
show that

f = lim
T →∞

1
T

∫ T

0
t · f dt.

which holds by definition. Secondly, consider elements f = h − r · h for any h ∈ L2(X,µ)
and r ∈ G. From above, we know that Pf = 0, so we must show

0 = lim
T →∞

1
T

∫ T

0
t · f dt.

Since f = h− r · h, for T > 2r, we can bound the integral component as∣∣∣∣∣
∫ T

0
t · f dt

∣∣∣∣∣ =
∣∣∣∣∣
∫ T

0
t · (h− r · h) dt

∣∣∣∣∣
=
∣∣∣∣∣
∫ T

0
t · h dt−

∫ T

0
t · (r · h) dt

∣∣∣∣∣
=
∣∣∣∣∣
∫ T

0
t · h dt−

∫ r

0
t · (r · h) dt−

∫ T

r
t · (r · h) dt

∣∣∣∣∣
=
∣∣∣∣∣
∫ T

0
t · h dt−

∫ r

0
t · (r · h) dt−

∫ T −r

0
t · h dt

∣∣∣∣∣
=
∣∣∣∣∣
∫ T

T −r
t · h dt−

∫ r

0
t · (r · h) dt

∣∣∣∣∣
=
∣∣∣∣∣
∫ T

T −r
t · h dt−

∫ r

0
t · h dt

∣∣∣∣∣
≤
∣∣∣∣∣
∫ T

T −r
t · h dt

∣∣∣∣∣+
∣∣∣∣∫ r

0
t · h dt

∣∣∣∣
≤ 2t‖h‖L2 .
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Therefore, when we normalize by multiplying by 1
T

, we get

lim
T →∞

1
T

∫ T

0
t · f dt ≤ 2r‖h‖

N
→ 0,

completing this piece of the proof.
Extending by linearity has now shown this result on a dense set in L2(X,µ). This is be-

cause F and 〈h − t · h〉 are maximally orthogonal subspaces. Therefore, any f ∈ L2(X,µ)
can be arranged so that ‖f − f0‖L2 < ε/2 and the function f0 satisfies Equation 3.12. We
can now compare Pf with the von Neumann Equation 3.12 to compute

lim sup
T →∞

∥∥∥∥∥Pf − 1
T

∫ T

0
t · f dt

∥∥∥∥∥ ≤ lim sup
T →∞

∥∥∥∥∥P (f − f0) − 1
T

∫ T

0
t · (f − f0) dt

∥∥∥∥∥
+ lim sup

T →∞

∥∥∥∥∥Pf0 − 1
T

∫ T

0
t · f0 dt

∥∥∥∥∥
= lim sup

T →∞

∥∥∥∥∥P (f − f0) − 1
T

∫ T

0
t · (f − f0) dt

∥∥∥∥∥
≤ 2‖f − f0‖
≤ ε,

where we used that f0 satisfies Equation 3.12 to get from line two to line three, and that
P has norm at most 1 as well as 1

T

∫ t
0 t · f dt ≤ ‖f‖ to get from line three to line four.

An important result is that we can achieve the same result by flowing backwards in
time, i.e., the result holds equivalently to replacing the above Equation 3.12 with

Pf = lim
T →∞

1
T

∫ 0

−T
t · f dt

and these forward and backwards limits will agree.
Using our discussion on the Riemannian geometry of geodesics, we know that geodesics

can be given a short time existence and uniqueness, and for complete manifolds, this ex-
tends to infinite time. We use this to motivate flowing by geodesics. In this case, the input
is a point on the manifold and a direction. This is parameterized by T1M which is the unit
length tangent bundle over M . Notably, this is a sphere bundle Sn−1 ↪→ T1M → M ,
which is a fiber bundle with fibers Sn−1 for M a manifold of dimension n. It is compact
if and only if M is compact. The unit tangent bundle inherits a Riemannian metric from
(M, g) via parallel transport. To give a metric on T1M is to give a metric on the tangent
space at each point that is smoothly varying. We can represent a tangent vector at a point
p in a manifold as (the equivalence class of) the derivative of a smooth curve at p. Let
α, β : [−ε, ε] → T1M be smooth curves. These trace out paths

α(t) = (x(t), v(t)), v(t) ∈ Tx(t)M, β(t) = (y(t), w(t)), w(t) ∈ Ty(t)M
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that can be split into the component along M and a unit tangent direction at that point.
We now use the Riemannian structure on M to compare their derivatives at t = 0. Define
ṽ(t) to be the parallel transport of v(t) to the point x(0) along x, and similarly, let w̃(t) be
the parallel transport of w(t) to the point y(0) along y. We now can give an inner product
of α̇(0) with β̇(0) as

〈α̇(0), β̇(0)〉 =
〈
d

dt
|t=0ṽ(t), d

dt
|t=0w̃(t)

〉
+ 〈ẋ(0), ẏ(0)〉

using the Riemannian metric on M on the right side of the equation. This gives a measure
on T1M to which we can define ergodicity of the geodesic flow, defined below.

Definition 3.4.5 (Geodesic flow). Given a complete compact manifold M , we define the
geodesic flow

R × T1M → T1M

for (t, (x, v)) ∈ R × T1M by taking the unique geodesic γ : R → M such that γ(0) = x and
γ̇(0) = v and the geodesic flow maps this to (γ(t), γ̇(t)) ∈ T1M .

Our main theorem is that on a complete, finite volume hyperbolic manifold, the geodesic
flow is unique.

Theorem 3.4.6 (Geodesic flow is ergodic). For M a complete, finite volume hyperbolic man-
ifold, the geodesic flow R × T1M → T1M is ergodic.

Proof. This argument is due to Hopf and is a widely used technique to study ergodic the-
ory on various spaces. Consider T1M to be the unit tangent bundle of M , which is an
Sn−1 bundle over M . Geodesics, normalized to unit speed, are parameterized by points
in T1M by the exponential map. We want to examine the subspace L2(T1M) consisting of
the G-invariant functions. Using the von Neumann Theorem 3.4.4 above, if we show that
these functions are exactly the constant (almost everywhere) functions, then we know the
flow is ergodic.

Let gt be the geodesic flow map. First assume that f ∈ Cc(T1M) is a compactly sup-
ported continuous function on T1M . This will be sufficient since such functions are dense
in L2(X,µ). The ergodic theorem tells us that

f+(v) = lim
T →∞

∫ T

0
f(gt(v)) dt

exists for almost all v ∈ T1M . Similarly, we can reverse and flow backwards to get that

f+(v) = lim
T →∞

∫ T

0
f(gt(v)) dt

also exists for almost all v ∈ T1M . Furthermore, these converge to the subspace of G-
invariant functions under the L2 projection operator F . Furthermore, for almost all v ∈
T1M , we know that f+(v) = f−(v) = F (v).
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Now we utilize the geometry of hyperbolic space. Notably, if we are given two distinct
geodesics that in one direction converge to the same point at infinity in Sn−1

∞ , they diverge
in the other direction. Furthermore, for any two points in the interior of Hn, we can find
geodesics through each one of them that converge to a given point on the boundary sphere
at infinity.

We now pull back the geodesic flow to T1Hn via the universal cover map. This can be
thought of as taking a Dirichlet domain and unfolding M in Hn, and the geodesics unfold
to complete geodesics in Hn, so they are parameterized by pairs of distinct points in Sn−1

∞ .
Let v, w be two points in T1M such that when lifted to T1Hn, the geodesic flow gt(v) and
gt(w) converge to the same boundary point at Sn−1

∞ . That is, f+(v) = f+(w) when consid-
ered on M . This means that F (v) must be equal to F (w), telling us that f−(v) = f−(w).
Fix v a constant. We can apply this to all w that converge in positive time to the same
point at infinity as v does, which tells us that F must be constant along the n − 1-sphere
horocycle foliation of T1M . Each one of the geodesics given by such a w converges in the
negative time to a distinct point on the boundary, and by completeness, we can find these
points to be dense in the boundary, (only dense because the equation of F (v) = f+(v) is
only true almost everywhere). Therefore, we have shown that F must be constant almost
everywhere on the boundary sphere Sn−1

∞ .
The above analysis says that F is constant along the horocycle foliation of T1M . This

is a foliation orthogonal to the geodesic flow. We are actually applying Fubini’s theorem
to complete the proof that F is constant everywhere. This conclusion for compactly sup-
ported continuous functions finishes the proof upon the observation that Cc(T1M) is dense
in L2(T1M).

3.5 Extending the map to the boundary

Let F be the lift of f to the universal cover which is Hn. Because F maps geodesics to
quasi-geodesics, it induces an association of geodesics and therefore can be used to define a
map between the spheres at infinity. The key insight is that a point on the sphere at infin-
ity is an equivalence class of directed geodesics that are asymptotic or parallel. Since the
above induces a unique association of geodesics, this will preserve this property of parallel
and asymptotic in the universal cover, so there is a correspondence of points on the bound-
ary. It must still be shown that F is continuous when considered as a map from Dn → Dn.
This is clear in the interior, so it must be shown to be continuous on the boundary.

Let x∞ be a point on the boundary and let γ be a geodesic with an endpoint at x∞. A
local base at F (x∞) is given as the half planes on the side of F (x∞) of geodesics perpen-
dicular to γ′, the associated geodesic to γ. Let Q be some element of this local base. Let
xi → x∞. At some point for i � 0 sufficiently large, all F (xi) ∈ Q. Therefore, there exists
some x0 ∈ γ such that for all x ∈ [x0, x∞], the geodesic segment from x0 to x∞ along γ,
there exists a constant c > 0 from Lemma 3.6.1 such that the ball around πγ′F (x) is con-
tained in Q. Let H be the hyperplane perpendicular to γ going through x0, and Q′ be the
connected component of Hn\H containing x∞. Let H1 be a parallel hyperplane to H going
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through x. It must be that F (H1) ⊂ Q and so must be F (Q′) ⊂ Q, thereby showing the
continuity. Furthermore, to show injectivity, let x1 6= x2 be two boundary points. Let γ be
the geodesic with x1 and x2 as its endpoints. F (x1) and F (x2) are the endpoints of γ′ and
are therefore distinct. The Jordan Schoenflies theorem now says that the entire map on
the sphere at infinity is a homeomorphism since it is injective and continuous. This gives
our desired map F : Sn−1

∞ → Sn−1
∞ , which is a homeomorphism.

3.6 Mostow’s proof

We can now finish the proof of Mostow rigidity using the established background above.

Lemma 3.6.1. Let P be a hyperplane in Hn and F : Hn → Hn be a pseudo-isometry. Let γ
be a geodesic perpendicular to P and γ′ be the associated geodesic given by F . There exists
some c > 0 such that πγ′(F (P )) lies in the region to Bc(γ′), the points of distance at most
c from γ’.

Proof. Label the point x = P ∩ γ, and let y be a different point on the plane P . Let Γ
be the directed geodesic starting at x and going through y. The geodesic Γ terminates at
a point on the boundary y∞ on the y-side of γ. Let Γ1,Γ2 be the maximal geodesics with
endpoints at y∞ and the two ends of γ. Let x1 and x2 be the points on Γ1 and Γ2 closest
to x, see Figure 3.1. Because Γ and γ are perpendicular, d(x, x1) = d(x, x2) = k is some
constant independent of construction. In fact, a Möbius transformation can be applied to
make the picture exactly like Figure 3.1 since they are triply-transitive. After applying
the Möbius transformation, we can let x be the origin, y a pure imaginary number, and
assume that γ has an endpoint to one of the sides of the horizontal geodesic.

For F , the pseudo-isometry in question, it associates to any geodesic γ the geodesic γ′ as
discussed. The claim is that if γ1 and γ2 are asymptotic, then so are γ′

1 and γ′
2. This can

be seen because F associates this geodesic by defining id based on its endpoints, so if γ′
1

and γ′
2 share an endpoint, by definition of this association, so will their images under the

association map given by F . Let z0 = πγ′(F (x)), so from triangle inequality, the distance
to Γ′

1 and Γ′
2 can be bounded by

dHn(z0,Γ′
i) ≤ dHn(z0, F (x)) + dHn(F (x), F (xi)) + dHn(F (xi),Γ′

i) (3.13)

and from the diagram and above argument, dHn(z0,Γ′
i) ≤ 2r + Ck = d, for C the constant

defining F as a pseudo-isometry and the same r as in Proposition 3.2.4. Notably, d is only
a function of C and C ′, as r is a function of C, and C ′ and k was independent.

The final bound of dHn(πγ′F (y), z0) ≤ c can now be computed as

dHn(πγ′F (y), z0) ≤ dHn(πγ′(F (y)), πγ′(Γ′)) + dHn(πγ′(Γ′), z0)
≤ dHn(F (y),Γ′) + dHn(πγ′(Γ′), z0)
≤ r + dHn(πγ′(Γ′), z0)
≤ r + d

(3.14)
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Figure 3.1: The x is on geodesic γ and Γ is a half geodesic along the plane P emanating from x in the direc-
tion of y. Γ1 and Γ2 are the two unique geodesics parallel to γ and Γ. x1 and x2 are the points on Γ1 and Γ2
closest to x.
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completing the proof by setting c = 2(d+ r) since it was the diameter.

The proof is almost complete, and the rest will follow from further regularity of the map
F . Firstly, it will be shown that F is quasi-conformal. This means it has a derivative al-
most everywhere. Where the derivative exists, it maps a sphere around 0 to an ellipsoid,
so there are values λ1, . . . , λn−1 representing the eccentricities of the derivative map. Let e
be the map that is the largest ratio of these eccentricities. The fundamental group of M1
acts ergodically on Hn, so the level set of e has full measure, and thus e is constant almost
everywhere, and it turns out it will be 1 almost everywhere. A quasi-conformal map with
a derivative that is conformal is actually conformal as well. This means that the now con-
formal map on the sphere at infinity extends to a unique isometry of Hn, which is the map
that sends π1(M1) → π1(M2) as desired.

In Chapter 2, we showed that isometries in the interior of Hn corresponded with confor-
mal maps on the boundary sphere at infinity. We now establish a similar correspondence
by replacing isometries with pseudo-isometries and conformal maps with quasi-conformal
maps.

Proposition 3.6.2 (Pseudo-isometry on sphere at infinity is QC). If F is a pseudo-isometry
from the compactified Hn to itself and is a homeomorphism on the boundary, then it is
quasi-conformal on the boundary sphere at infinity.

Proof. Let x and F (x) be the origin in Hn and γ = exp(it) the vertical geodesic from 0 to
infinity. Let H be any hyperplane perpendicular to γ. H would look like a hemisphere cen-
tered at 0. By the normalization, assume that γ′, the geodesic associated to γ, is also the
vertical line from 0 to ∞. By the previous result in Lemma 3.6.1, there is a constant c > 0
and two hyperplanes H1 and H2 such that distance along γ′ between any hyperplanes be-
tween H1 and H2 is uniformly bounded by c. This distance is seen to be the vertical dis-
tance log r for r the ratio of the radii of the Sn−2 spheres at infinity of H1 and H2. The
image of H lies between H1 and H2, so as does its boundary along Sn−1

∞ . This means that
r uniformly bounds the difference between points along Sn−2

H . Therefore, r is uniformly
bounded and F is quasi-conformal as desired.

This is where the proof fails for hyperbolic manifolds in two dimensions. The boundary
is S1 in which quasi-conformality says almost nothing. The theorem we recall from the
previous Section 3.3 states that for a manifold of dimension at least two, quasi-conformal
maps have a derivative almost everywhere. This result tells us that the map F restricted
to the boundary Sn−1

∞ has a derivative almost everywhere. Let x be a differentiable point.
This means that dF (x) takes a small sphere to an ellipsoid with axis lengths λ1 ≤ · · · ≤
λn−1. The ratio λj

∏
λ−1

i is a conformal invariant. Notably, assume that this product is 1,
and let e = λn−1/λ1 be the maximum eccentricity of this ellipsoid. The supremum of e is
the essential supremum K of the quasi-conformal mapping F .

Theorem 3.6.3. Let M be a hyperbolic manifold of dimension at least three. π1(M) acts
ergodically on Sn−1

∞ as well as on Sn−1
∞ × Sn−1

∞ .
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This action comes from the universal cover map via deck transformations. In fact, it
acts ergodically on Sn−1

∞ × Sn−1
∞ which is identified with the space of oriented geodesics.

Ergodic means any invariant subset has either 0 or full measure.
The above theorem is simply a rephrasing of the ergodicity of the geodesic flow (The-

orem 3.4.6) proven above, once we recognize that Sn−1
∞ × Sn−1

∞ is the space of geodesics.
From this result, we can examine the behavior of the eccentricity map defined above. No-
tably, we realize that the ergodicity of the geodesics flow tells us that it is trivial.

Corollary 3.6.4. The map e of eccentricity is constant almost everywhere.

Proof. A level set of e is measurable. Therefore, one such level set must be of full measure.

Let K be the constant that e is equal to almost everywhere. If K = 1, then the deriva-
tive of F is conformal. It will be a contradiction to have K not equal to 1. Otherwise this
would create an invariant measurable set in Sn−1

∞ , violating Theorem 3.6.3.
Finally, Theorem 3.3.3 from Section 3.3 states that this map is actually conformal be-

cause its derivative is conformal almost everywhere. Therefore, we deduce that F is a con-
formal map between Sn−1

∞ → Sn−1
∞ and therefore extends to a unique isometry F : Hn →

Hn finishing the proof of rigidity in the compact setting.

3.7 Corollaries

We can now use the result of Mostow to prove some of the results claimed in the introduc-
tion, Chapter 1.

Proposition 3.7.1. For a homotopy equivalence f : M → N between two hyperbolic mani-
folds of the same dimension, the isometry f̃ homotopic to f is unique.

Proof. Assume that f, g : M → N are isometries and homotopic. The homotopy can be
given by some F : [0, 1] × M → N , and we can lift to F̃ : [0, 1] × Hn → Hn to the uni-
versal covers. The lifts f̃ and g̃ of f and g to the universal covers are given by F̃ (0,−) and
F̃ (1,−). By compactness of M and N , we can compare these two maps and get a uniform
bound

dHn(f̃(x), g̃(x)) < c

meaning that both f̃ and g̃ extend to the same map on the boundary sphere at infinity.
Two isometries that induce the same map on the boundary are the same, a result proven
in Chapter 2 Section 2.3.

We denote [M,M ] to be the classes of maps from M → M up to homotopy. The subset
of [M,M ]∗ are invertible, up to homotopy. Altering any map homotopically can be real-
ized as conjugation by an element of the fundamental group, so for an Eilenberg-Maclane
space K(G, 1), this group is identified with the inner automorphisms of G. The above
proposition states that these are the isometries of M .
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Corollary 3.7.2. Let M = Hn/Γ be a compact hyperbolic manifold for n ≥ 3. Then the
outer automorphism group of Γ is finite.

Proof. From the previous Proposition 3.7.1, we know that [M,M ]∗ = Isom(M). Because
M = K(Γ, 1), its isometry group is identified with the outer automorphisms of Γ.

We conclude by showing the isometry group of M is finite. Examining this map on a
Dirichlet domain, it is clear that such an isometry must have a fixed point. The derivative
of the map at this fixed point determines it by rigidity. The isometry group of M is com-
pact in the C0-topology because M is compact. Consider two elements φ, ψ ∈ Isom(M). If
the isometry group were infinite, then we could choose φ and ψ such that for all x ∈ M ,
we can bound the distance dHn(φ(x), ψ(x)) by the injectivity radius of M , which is finite
by compactness of M . This tells us that φ and ψ are homotopic, so from Proposition 3.7.1,
they are equal.

We note that for dimension n = 2, the finiteness of the isometry group is a well-known
result that the automorphism group of a Riemann surface of genus g is at most 84(g − 1).
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4
Gromov’s proof of rigidity

4.1 Gromov’s proof overview

The second proof of Mostow rigidity is due to Gromov, and historically takes
place already knowing the result. Knowing that hyperbolic invariants descend to topolog-
ical invariants, Gromov’s method can be realized as first capturing the geometric notion
of volume in a purely topological manner. Gromov defined a numerical quantity which is
eponymously called the Gromov norm, which captures the complexity of the fundamen-
tal class of a manifold, a feature well-studied in topology related to integration along the
manifold. The name is a slight misnomer, as this is only a semi-norm, meaning it can van-
ish on many non-trivial spaces including spheres. The ingenuity of his definition comes in
the context of hyperbolic manifolds when this quantity exactly aligns with the hyperbolic
volume, up to a normalization constant only dependent on the dimension.

We start with the same first step as in Mostow’s proof, by extending the map f̃ to an
injective map on the boundary sphere at infinity Sn−1

∞ → Sn−1
∞ continuously. The sec-

ond step is to examine the volumes of simplices and ideal polyhedra, mainly providing a
volume bound on such shapes, which are fundamental hyperbolic building blocks as moti-
vated above in the construction of hyperbolic structures on knot complements. This proof
reveals that encoded within the algebraic structure of the Kleinian group that defines M is
the geometry of the maximal volume simplices; the algebra describes the geometry.
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4.2 Gromov norm

Definition 4.2.1. Let α ∈ Hk(X) be a k-homology class. The norm ‖α‖ is defined

‖α‖ = inf
[
∑

aici]=[α]

{∑
|ai| : α =

∑
aici, ci ∈ Ck(X)

}
(4.1)

as the infimum over all singular chains representing α in homology of the sum of the abso-
lute value of the coefficients.

Definition 4.2.2 (Gromov Norm). Let M be a closed manifold. It has a distinguished co-
homology class [M ] ∈ Hn(M) the fundamental class that generates the top homology
group. The Gromov norm of M is the homology norm 4.2.1 of [M ] its fundamental class,
‖M‖ = ‖[M ]‖. The name norm is deceptive as for many non-contractible spaces, this
quantity will vanish, but in the hyperbolic setting, this will not occur.

The remarkable discovery of Gromov is that this purely topological invariant is actually
realized via geometry, in that this Gromov norm is (up to a proportionality constant) the
hyperbolic volume. Firstly, there are a few inequalities of the Gromov norm that are clear
by definition:

· Scalar multiplication: ‖λα‖ ≤ |λ|‖α‖,

· Subadditivity: ‖α + β‖ ≤ ‖α‖ + ‖β‖,

· Pushforward: ‖f∗α‖ ≤ ‖α‖.

All these properties come from the fact that any singular chain representing the right-hand
side also represents the left, (on the third after composing with f), so the infimum on the
left can be only less if there is a better representation. Notably, if f : M → N is a degree
n map between spaces of the same dimension, then ‖M‖ ≥ | deg(f)|‖N‖. This gives easy
computations of the Gromov norm for many manifolds. Consider f : Sn → Sn to be a
degree k map; this shows that ‖Sn‖ ≥ k‖Sn‖, so it must vanish.

4.3 Simplex volumes

Let Sn be the set of all n-dimensional hyperbolic simplices. Any simplex that is not ideal
is properly contained in an ideal simplices, so notably, it does not have maximal volume.
We can produce this by extending its sides. To do this, take a 1-dimensional ridge that is
incomplete and complete it. Now, connect all other vertices connected to the original ver-
tex to the new ideal vertex. This new simplex properly contains the previous one, so it has
larger volume. The nature of hyperbolic geometry states that the volume of any such sim-
plex is uniformly bounded. It is in fact true that the simplex that obtains the maximum
volume is the ideal regular simplex. Ideal means each of its n-vertices lies on the sphere
at infinity Sn−1

∞ . Regular means it is maximally symmetric, like a Euclidean tetrahedron

82



with each face an equilateral triangle, for example. Concretely, we can express the regu-
larity of a simplex as every permutation of its vertices comes from an isometry of Hn that
leaves the interior of the simplex invariant. All of its edges, ridges of dimension 1, have
the same length. If it is not an ideal simplex, this length is finite. This constant represent-
ing the volume of an ideal regular n-simplex will be labeled vn, the limit of the volumes
of regular finite simplices of increasing edge length. The fact that this is the unique sim-
plex obtaining the maximum volume was not known to Gromov when he proved Mostow
rigidity initially, so his proof was only available for dimension n = 3 where it was known.

As computed in Chapter 2 Section 2.8, in dimension 2, a triangle area is determined by
its angle defect K = π − α − β − γ, and an ideal triangle has area π as all its angles are
0. Since the Möbius transformations are triply-transitive, all ideal triangles are congruent.
For a 3-simplex, this is no longer the case. Consider H3 with boundary C ∪ ∞, the Rie-
mann sphere. The isometry group consists of the Möbius transformations PSL(2,C), as it
is determined by its action on the sphere at infinity. Therefore, the four vertices can be set
to 0, 1,∞, z. The choice of z determines the congruence class of the ideal tetrahedron. It
is determined by three dihedral angles that sum up to π, which is a 2-dimensional space
as expected by the possibilities of the choice z. By the claim that the maximum is a regu-
lar ideal simplex, this can be given as z = eiπ/3, for example. In fact, in general, an ideal
n-simplex can be made with a point at ∞ and n-vertices in Sn−1

∞ that form a Euclidean
regular (n− 1)-simplex.
Theorem 4.3.1 (Uniform bound on volume of an n-simplex). There is a uniform bound on
the volume vn of an ideal n-simplex. In fact, vn ≤ π

(n− 1)!
.

Proof. By induction, the inequality claimed reduces to the claim that vn ≤ vn−1
n−1 . For the

base case n = 2, the maximal volume is the ideal triangle of area π as previously computed
in Chapter 2 Section 2.8. Consider an n-simplex in Hn with a single vertex at ∞ and the
other n-vertices forming an (n−1)-simplex on Rn−1 ×{0}, the boundary. We can label this
base τ . The volume of this can be computed exactly as in Equation 2.26 from Chapter
2 Section 2.8 over this higher dimensional base, τ . We label the coordinates of Hn+1 as
(x, t) ∈ Rn

x × Rt with t > 0 for concise notation, and the hyperbolic metric is 1
t2 δij. The n

points are all equidistant from a single point z, and the hemisphere around z lying in Hn

forms the bottom side of the n-simplex. Label this (n−1)-simplex σ, and let the projection
onto Rn−1 be the region τ with coordinates x = (x1, . . . , xn−1). The volume is the integral
of 1 over the last variable t to the n, 1

tn above the surface of the hemisphere, which we can
label h. Without loss of generality, assume this hemisphere is centered at the origin and of
radius 1 for the computation to appear later. Let dx be the volume form on Rn−1.

vn ≤
∫

τ

∫ ∞

h(x)

1
tn
dt dx = 1

n− 1

∫
τ

dx

hn−1 . (4.2)

The claim is that the integral that remains is less than the maximal volume element vn−1.
Let σ0 be the (n − 1)-simplex across from the vertex at ∞, and α be the coefficient of
dilation based on the parameterized volume form of the (n − 1)-simplex, via the map
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τ 3 x 7→ (x, h(x)), and label this map φ, that is Vol(σ0) =
∫
α. Showing α ≥ 1

hn−1 will
complete the proof.

We notate 〈−,−〉 as the Euclidean inner product on Rn−1. We can therefore express α
as

α(x) =
√

det(〈dφx(ei), dφx(ej)〉)

where the matrix whose determinant we are taking has entries Tij = 〈dφx(ei), dφx(ej)〉.
The expression of α gives the equation evaluated at v

dφx(v) =
(
v,

〈x, v〉
(1 − |x|) 1

2

)
=⇒ 〈dφx(ei), dφx(ej)〉φx = 1

1 − |x|2

(
δij + 〈x, ei〉〈x, ej〉

1 − |x|2

)
(4.3)

and the determinant of this matrix, which is α2, is computed using the fact that a matrix
Aij = δij + aiaj has determinant 1 +∑

a2
i for ai constants. Therefore,

α(x)2 = 1
(1 − |x|2)n−1

(
1 +

∑〈x, ei〉2

1 − |x|2

)
= 1

(1 − |x|2)n
= 1
h(x)2n

(4.4)

and since h ≤ 1, this shows that α(x) ≥ 1
h(x)n−1 .

It was proven by Haagerup and Munkholm [HM81] in 1981 that the maximum volume
simplex is uniquely achieved by a regular ideal n-simplex.
Theorem 4.3.2 (Haagerup and Munkholm). The maximum volume of a hyperbolic n-simplex
is achieved only by an ideal regular n-simplex.

See Appendix A for this result. This statement was the missing piece conjectured by
Thurston to extend Gromov’s proof of Mostow rigidity to all dimensions.

4.3.1 Gromov norm is hyperbolic volume

At this point, there are multiple strategies to translate between the singular homology def-
inition of the Gromov norm and hyperbolic volume. One method, which Thurston uses,
is to define the Gromov norm using homology of compactly supported and bounded total
variation measures instead of the more digestible singular homology. This will make inte-
gration over the manifold easy. However, it would require a less natural topological defini-
tion of the Gromov norm, or delving more deeply into homology theory to show that these
are equivalent. This approach can be seen in full detail in Thurston and Milnor [TM77]
and Thurston [Thu79]. To keep within singular homology, we will need to define volume
more algebraically. For this purpose, we appeal to the universal cover. Any simplex can be
lifted to the universal cover using the path lifting property. Fixing the vertices, it can be
made fully geodesic by replacing the simplex with the convex hull of its vertices. This does
not change the simplex up to homotopy, so it has no effect on the homology class. This
will align with the standard interpolations of simplices by lower dimensional simplices. No-
tably, any points in the interior are naturally described as convex combinations of the ver-
tices. This process will be called straightening because the crooked and potentially curved
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sides and interior will be homotopically replaced with geodesics sweeping out the simplex.
The terms and definitions utilized here can be found in Benedetti [Ben92].

Theorem 4.3.3. The Gromov norm is greater than or equal to the volume up to proportion-
ality, ‖M‖ ≥ Vol(M)

vn
.

Before the proof, there are some definitions and remarks that will be useful elsewhere
along the proof of the whole theorem. Let σ : ∆k → Hn be a k-simplex. Recall that ∆k

is the set of points in Rk+1 that form the convex hull of the standard basis ei. Therefore,
∆k has a natural structure as the convex hull of its vertices. Let V0, . . . , Vk be the images
of the vertices under σ. A simplex in Hn is called straight if its image is exactly the convex
hull of its vertices and the point

σ : ∆k 3 (t0, . . . , tk) 7−→
∑

i

tiVi.

For π : Hn → M the universal cover, a simplex in M is straight if it is realized as the pro-
jection of a straight simplex. A singular chain is straight if it is a combination of straight
simplices. Notably, every chain up to homotopy can be represented by a straight chain. To
see this, take f : ∆k → M and lift it to f̃ : ∆k → M . Every point x ∈ ∆k is a convex
combination of its vertices, x = aivi for ∑ ai = 1 and ai ≥ 0. Take the homotopy that
translates the point f̃(x) to the point ∑ aif̃(vi) along the geodesic connecting them at con-
stant speed. A simplex is degenerate if it is contained in a positive codimension hyperbolic
space.

Proof of Theorem 4.3.3. This can be reduced to examining straight cycles, as any singu-
lar chain can be homotoped to be straight. Let ∑ aiσi. Notably, this homotopy does not
change the Gromov norm of the singular chain as all the coefficients remain the same. To
relate the algebraic structure to the geometric one, an algebraic definition of volume can
be formed using straight simplices. Let ϕ = π ◦ σ : ∆n → M be a straight and non-
degenerate simplex. The derivative at an interior point either preserves or reverses orienta-
tion. Define the algebraic volume of ϕ to be the volume of σ if orientation is preserved or
the negative volume if the orientation is reversed. Simply stated,

algvol(ϕ) =
∫

ϕ(∆n)
α(x)dv(x) (4.5)

for dv(x) the volume form on M , and α(x) is α+ − α− for α+(x) = |{t ∈ Int(∆n) : ϕ(t) =
x, dϕt > 0}| and likewise for α− = |{t ∈ Int(∆n) : ϕ(t) = x, dϕt < 0}|. This captures
the algebraic multiplicity at each point. Extending linearly gives a definition of algebraic
volume to all straight chains. The algebraic volume of a simplex is the hyperbolic volume
of some hyperbolic simplex, so this algebraic notion of volume is also bounded by vn for
any simplex.

Let [M ] be represented by a straight cycle z = ∑
aiϕi. Define the subset N as the union

of all the boundary components N = ⋃
i ϕi(∂∆k). With αi(x) as above for each simplex
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ϕi, define Φz(x) = ∑
aiαi(x). The claim is that Φz(x) = 1 for all x ∈ M \ N . Let T be a

straight triangulation of M ; first choose any triangulation, and then straighten it using the
process above. This gives a canonical representation z0 of [M ] that is formed from straight
simplices from this triangulation. For Φz0(x), this representation clearly demonstrated that
Φz(x) is identically 1 on the interior of each simplex in the triangulation. This is because
generic points do not lie in the (n − 1)-skeleton of the triangulation given by T , so Φz0

is locally constant on the interiors of the simplices, and equal to 1 since each point not
in the (n − 1)-skeleton is covered by a unique n-simplex in T . This reduces to showing
that Φz−z0 = 0 on M \ N . The inclusion map i : (M, ∅) → (M,M \ {x}) of pairs in
relative homology induces an isomorphism in top homology as seen via excision and gives
the identification:

i∗ : Hn(M) → Hn(M,M \ {x}), i∗([ω]) = Φω(x) (4.6)

after fixing a generator 1 of the relative homology group Hn(M,M \ {x}) for ω = ∑
biωj a

straight representation and x not in ⋃i ωj(∂∆n). Therefore, Φz−z0(x) = 0 as desired. This
map is now referred to as Φ, as its choice of representative is generically defined. Since
N has positive codimension, the integral of Φ is well-defined and can be integrated to com-
pute the volume since N does not contribute to this computation: Vol(M) =

∫
M Φ(x)dv(x).

Integrating the αi terms gives the algebraic volume∫
M
αi(x)dv(x) =

∫
ϕ(∆n)

αi(x)dv(x) = algvol(σi) (4.7)

so the hyperbolic volume can be computed

Vol(M) =
∑

aialgvol(σi) = algvol
(∑

aiσi

)
, (4.8)

and since this was a straight simplex, the algebraic volume and hyperbolic volume in Hn

agree, the proof is complete from

Vol(M) =
∣∣∣∑ aialgvol(σi)

∣∣∣ ≤
∑

|ai||algvol(σi)| ≤ vn

∑
|ai|. (4.9)

The next step is to show the inequality in Theorem 4.3.3 is actually an equality, directly
creating a link between geometry and topology.

Theorem 4.3.4. The Gromov norm is bounded by the volume of a closed hyperbolic mani-
fold: ‖M‖ ≤ Vol(M)

vn
.

Corollary 4.3.5. ‖M‖ = Vol(M)
vn

follows from Theorems 4.3.3 and 4.3.4.

Example 4.3.6. The simplest case of Theorem 4.3.4 is in dimension two where it states that
the volume of a closed hyperbolic surface, or a genus g ≥ 2 surface, must be less than
4π(g − 1). This is an immediate consequence of the Gauss-Bonnet theorem, which states
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that the volume is the Euler characteristic 2g − 2 times 2π, and since v2 = π. To bound
the Gromov norm, a genus g surface can be constructed by a 4g-sided polygon which trian-
gulates into 4g − 2 triangles by taking a vertex and connecting it to all vertices not already
adjacent it. Each triangle is mapped onto M via a map σi, so [M ] is represented by ∑σi

and therefore ‖M‖ ≤ 4g − 2.
Let M be a closed hyperbolic manifold of dimension two and consider Γ = π1(M). Since

M is compact and closed, it has infinite fundamental group. Notably, it contains at least
2g copies of Z. Take some copy of Z that is a subgroup of Γ. This subgroup gives a cover-
ing space πd : M̃ → M that is a d-sheeted cover corresponding to the subgroup dZ ⊂ Z.
The Riemann-Hurwitz formula now can be used to compute χ(M̃) = dχ(M). The genus
can then be computed as 1 − χ to realize g(M̃) = 1 − d(1 − g). From above, ‖M‖ ≤ 4g − 2,
so

‖M̃‖ ≤ 4(1 + d(g − 1)) − 2 ≤ 4d(g − 1) + 2

so dividing both sides by d yields ‖M̃‖ ≤ 4d(g−1)−2. Since M̃ → M is a d-sheeting cover,
‖M̃‖ = d‖M‖, and this gives the bound ‖M‖ ≤ 4(g − 1) − 2

d
. Since the Gromov norm is

the infimum, this gives the desired bound as d → ∞ that ‖M‖ ≤ 4(g − 1), completing the
proof in dimension two.

To prove Theorem 4.3.4, it is necessary only now to show ‖M‖ ≤ Vol(M)
vn

given inequality
in the other direction from Theorem 4.3.3.
Lemma 4.3.7. To show the reverse inequality, ‖M‖ ≤ Vol(M)

vn
, it is sufficient to prove that

there exists a straight cycle ∑ aiσi representing [M ] such that for each i,

sgn(ai)algvol(σi) ≥ vn − ε

for all ε > 0.
Proof. Given a straight cycle representing the fundamental class [M ] = ∑

aiσi, we will
show that the norm being arbitrarily close to vn is equivalent to the inequality ‖M‖ ≤
Vol(M)

vn
.

sgn(ai)algvol(σi) ≥ vn − ε, ∀i. (4.10)
By definition,

‖M‖ ≤
∑

|ai|. (4.11)
Repeating the argument for the proof of Theorem 4.3.3 proves that the hyperbolic volume
Vol(M) = ∑

aialgvol(σi). Applying Inequality 4.11 gives

Vol(M) =
∑

|ai|sgn(ai)algvol(σi) ≥
∑

|ai|(vn − ε) ≥ ‖M‖(vn − ε) (4.12)

and since the Gromov norm is the infimum, this shows the equality when combined with
Theorem 4.3.3.

We recall the results shown in Chapter 2 proven in dimensions two and three (Theorem
2.3.2) and more generally true in all dimensions, that the isometry group of Hn is unimod-
ular, that is, its Haar measure is both left- and right-invariant.
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Proposition 4.3.8. The isometry group Isom(Hn) is unimodular. It is naturally identified
with SO(n, 1) the determinant 1 matrices preserving a quadratic form of signature (n, 1).

Given a Borel subset A ⊂ Isom(Hn), the measure can be defined as µx(A) = Vol(A(x))
which is left-invariant by definition and right-invariant by Proposition 4.3.8. It is indepen-
dent of x as well by transitivity of the isometry group.

There are a few classes of polyhedra that will be necessary. Define S(R) to be all fully
oriented regular simplices with side length R,

S(R) = {(V0, . . . , Vn) ∈ (Hn)n+1 : dHn(Vi, Vj) = δijR}. (4.13)

Fully oriented means having a choice of ordering of the vertices. A polyhedron is deter-
mined uniquely by its vertices; a polyhedral simplex is the convex hull of its vertices. The
distances between the vertices are invariants of the simplex up to isometries. It turns out
that any regular simplex is determined (up to isometry) by the distance of any edge (re-
call an edge is a dimension 1 ridge). Furthermore, a simplex in Hn is regular if and only if
dHn(Vi, Vj) = R is fixed for any pair of distinct vertices Vi and Vj.

Proposition 4.3.9. A compact n-simplex defined by V0, . . . , Vn in Hn is regular if and only
if the distance between any two distinct edges is R.

Proof. The first direction, that a regular simplex has all side lengths equal, is immediate
by the definition that any permutation of the vertices arises from an isometry. Given the
edge between vertices (Vi, Vj) and (Vk, V`), consider the permutation (ik)(j`) which by as-
sumption arises from an isometry and shows that the edge lengths are equal.

For the other direction, assume that all edge lengths are equal to R. It is sufficient to
show this result only for the transposition of any two vertices, as these generate the entire
symmetric group on the n + 1 vertices. For vertices Vi 6= Vj, assume 0 6= i 6= j and fix
V0 = 0 in the disk model Bn. Define H as the linear hyperplane spanned by all vertices
Vk for k 6∈ {0, i, j} and the midpoint of the edge between vertices Vi and Vj. Reflection
through H maintains all Vk and swaps Vi and Vj, exhibiting an isometry that realizes the
transposition (ij).

Elements of S(R) will be notated by their vertices. Let (V0, . . . , Vn) ∈ S(R) be a regular
simplex of side length R. Any pair of such regular vertices of the same characteristic side
length R are related by an isometry.

Proposition 4.3.10. Fix a fully oriented regular geodesic simplex (V0, . . . , Vn) ∈ S(R) of
side length R. The map

Ψ : Isom(Hn) → S(R), Ψ(A) = (A(V0), . . . , A(Vn)) (4.14)

is a bijection. That is to say that the set of fully oriented regular simplices are in corre-
spondence with the isometry group. Notably, the isometry group acts transitively on S(R).
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Proof. Let A,A′ ∈ Isom(Hn) and suppose that Ψ(A) = Ψ(A′). Recall that the fully ori-
ented regular simplex (V0, . . . , Vn) was fixed to define the map Ψ. Since Ψ maps A and A′

to the same simplex V ′, that means each A(Vi) = A′(Vi) = V ′
i for all i. Therefore, A ◦ A′−1

has each Vi as a fixed point. Since there are n + 1 such points and this map is linear, it
must be the identity everywhere; therefore Ψ is injective.

To show surjectivity, assume that V0 = 0 in the disk model Bn and that some V ′ ∈ S(R)
has its vertices at (V ′

0 , V
′

1 , . . . , V
′

n). Since V ′
1 must lie on the sphere of radius R (hyperbolic

radius), there exists some A(1) an orthogonal matrix that maps V1 to V ′
1 . Therefore, as-

sume that V ′
1 = V1. Define A(2) as the orthogonal map that takes V2 to V ′

1 . Repeat and
A(n) maps V to V ′, showing surjectivity.

It is clear that a simplex V ∈ S(R) has bounded volume by vn, and as R → ∞ (hy-
perbolic distance), the volume limits to vn. This is seen by taking the regular Euclidean
tetrahedron centered around 0 in Rn of Euclidean radius r < 1. Its vertices determine an
element in S(R). As r → 1, the hyperbolic side length R → ∞ and this limits to a regular
ideal simplex. The conjecture of Gromov states that such a regular ideal simplex achieves
the volume vn (see Appendix A). This result shows that Vol(V ) → vn for V ∈ S(R) as
R → ∞. Because S(R) is the space of oriented regular simplices, the orientation of any
element is either positive or negative. To see this, consider V = (V0, . . . , Vn) ∈ S(R) and
then σ(V0, . . . , Vn) : ∆n 3 (t0, . . . , tn) 7→ ∑

tiVi ∈ Hn is orientation preserving or revers-
ing. Set S+(R) to be the orientation preserving maps of the regular simplex of side length
R, and S−(R) to be the orientation reversing maps of the regular simplex of side length
R. Let S̃(R) be the the image of the embeddings of the simplices S(R) in Hn. This can
be represented as S̃(R) = S(R)/Sn+1, the quotient of the fully oriented simplices by the
symmetric group on its vertices. We are now ready to begin the proof of Theorem 4.3.4.

Using the Haar measure µ on the isometries of hyperbolic space, a measure m is defined
on S(R) on a Borel subset A ⊂ S(R):

m(A) = µ({γ ∈ Isom(Hn) : (γ(V0), . . . γ(Vn)) ∈ A}) (4.15)

for the fixed V = (V0, . . . , Vn) ∈ S(R). Since µ is left- and right-invariant, this measure is
independent of choice of V .

There are some overhead definitions and constructions necessary before beginning the
proof of Theorem 4.3.4. Recall that M = Hn/Γ. Let Ω = Γn+1/Γ ∼= Γn be defined
by having Γ act on the left in each coordinate. An element of Ω can be represented by
(Id, γ1, . . . , γn) by taking some arbitrary element (γ0, . . . , γn) ∈ Γn+1 and taking the rep-
resentative by acting by γ−1

0 .
Define D as a fundamental domain for M in Hn. We recall that we can let D be the

Dirichlet domain by taking some point m ∈ M and choosing an arbitrary preimage in Hn

and picking all points x ∈ Hn such that dHn(m,x) ≤ dHn(m, γ(x)) for all γ ∈ Γ, (Chapter
2 Subsection 2.6.1). Let d be the diameter of D. Since M is compact, d is finite. Fixing
some interior point V ∈ D \ ∂D, define a simplex σω for ω ∈ Ω as π ◦ σ(γ0(V ), . . . , γn(V )).
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The goal is to construct an explicit example of a cycle representing the fundamental
class [M ] which has small Gromov norm. Using the definitions of σω from before and choos-
ing a representative for ω = (γ0, γ1, . . . , γn), define the positive and negative coefficient
functions

a±
R(ω) = m((V ′

0 , . . . , V
′

N) ∈ S±(R) : ∀j, V ′
j ∈ γj(D)). (4.16)

This is well-defined for a different representative of ω because m is secretly µ which is left-
invariant with respect to the action of some γ ∈ Γ. Explicitly, recall the fixed initial V ∈
S(R) used to define S±(R) with fully oriented vertices (V0, . . . , Vn):

a±
R(ω) = m((V ′

0 , . . . , V
′

N) ∈ S±(R) : ∀j, Vj ∈ γ ◦ γj(D))
= µ({g ∈ Isom+(Hn) : g(Vj) ∈ γ ◦ γj(D)})
= µ({γg : g ∈ Isom+(Hn) : g(Vj) ∈ γj(D)})
= µ(γ{g ∈ Isom+(Hn) : g(Vj) ∈ γj(D)})
= m({(V ′

0 , . . . , V
′

n) ∈ S±(R) : V ′
j ∈ γj(D)})

utilizing the left-invariance of µ and that Γ ⊂ Isom+(Hn). The fundamental domain D
also is such that, for any point x0 ∈ D, the isometries {δ ∈ Isom(Hn) : δ(x0) ∈ D} are
compact in the Lie group Isom(Hn). and therefore has finite measure with µ, since M is
compact. Therefore, a±

R(ω) is finite.

Lemma 4.3.11. Define zR = ∑(a+
R(ω) − a−

R(ω))σω. This represents a non-zero multiple of
[M ]. In particular, this is a finite sum and a well-defined cycle.

Proof. Firstly, zR is a finite sum. Let ω = (Id, γ1, . . . , γn) be a chosen well-defined rep-
resentative. Assume that aR(ω) is non-zero. There is a regular simplex σ with vertices
u0, . . . , un in S̃(R) such that for u0 ∈ D, each ui ∈ γi(D) for all i. Let u be an interior
point of the simplex, a convex combination of the ui, so this gives the bound dHn(u, γi(u)) ≤
2d + R for each i where d is the diameter of D. Since Γ is discrete, only finitely many
γi satisfy this and are possible by tesselating the region by isometric copies of d; only so
many will fit this bound. Therefore, a+

R is 0 for a cofinite set, and therefore zR is a finite
sum.

Secondly, zR is a cycle; it has trivial boundary as a singular chain. Consider a side τ (an
(n− 1)-dimensional face) of one of the σω that is non-zero. The claim is that the coefficient
of ∂zR is 0, so it is indeed a cycle. τ is obtained as the projection of a straight (n − 1)-
simplex with vertices in the orbit of Γ acting on the vertices of ui. That is, τ : ∆n−1 3
(t0, . . . , tn−1) 7→ π (∑ tiγi(u)) for choices γi and i = 0 to n − 1. The coefficient of the
boundary face is computed by summing over all γ ∈ Γ, the alternating sum inserting γ
into each slot:

n∑
j=0

(−1)n−j
∑
γ∈Γ

aR([(γ0, . . . , γj−1, γ, γj, . . . , γn−1)]). (4.17)

The claim is for each j, the second sum in Equation 4.17 is 0. Recall that aR = a+
R − a−

R,
so this sum splits into these two components. Reindexing in the last slot, each component
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can be computed as∑
γn∈Γ

a±
R([(γ0, . . . , γn)]) =

∑
γn

m({(u0, . . . , un) ∈ S±(R) : ui ∈ γi(D)})

= m

 ⋃
γn∈Γ

{(u0, . . . , un) ∈ S±(R) : ui ∈ γi(D)


= m{(u0, . . . , un) ∈ S±(R) : ui ∈ γi(D), i ≤ n− 1, ∃γn ∈ Γ : un ∈ γn(D)}
= m{(u0, . . . , un) ∈ S±(R) : ui ∈ γi(D), i ≤ n− 1}

(4.18)

and from this, the sets A± ⊂ S±(R) can be defined as

A±
R = {(u0, . . . , un) ∈ S±(R) : ui ∈ γi(D), i ≤ n− 1} (4.19)

and this tells that the coefficient is m(A+
R) − m(A−

R). Let g0 be the reflection through the
hyperbolic hyperplane containing V0, . . . , Vn−1. Recall V = (V0, . . . , Vn) was the fixed regu-
lar fully oriented n-simplex of side-length R used to define the orientation preserving and
reversing simplices. Examining the positive and negative coefficient sets of A±

R can be re-
lated as

{g ∈ Isom−(Hn) : g(Vi) ∈ γi(D), i ≤ n−1} = {g·g0 : g ∈ Isom+(Hn), g(Vi) ∈ γi(D), i ≤ n−1}
(4.20)

so the coefficient of each boundary piece is the difference between the measures of these
two sets. Since m is both left- and right-invariant, this vanishes and zR is indeed a cycle.

It is left to be shown that zR is a multiple of [M ]. Suppose that R > 2d for d the diam-
eter of D, a chosen fundamental domain of M in Hn. If this is so, the a+

R(ω)a−
R(ω) = 0 for

all ω ∈ Ω. If R > 2d, it means that any two adjacent vertices are in different copies of
D, which tessellate the hyperbolic space Hn. Consider some regular simplex σ0 ∈ S̃(R). If
it has its first vertex in D, and each further vertex ui in γi(D), then any other element of
S̃(R) must share its orientation. This is shown by choosing ω to have the identity in the
first slot and noting that the regions γi(D) are mutually disjoint, so there is no space for
an orientation reversing map.

Recall that for any ε > 0, if R is large enough, the algebraic volume of a regular simplex
of side length R has volume at least vn − ε. This was a previous lemma. It follows from
the fact that the simplices achieving vn are regular and ideal, and as R → ∞, the finite
length regular simplices approximate regular ideal simplices. The picture is to consider the
vertices being on a Euclidean regular simplex in Bn on some ball of radius r < 1 and then
filling it in using hyperbolic convexity and letting r → 1.

If R > 2d, then for some ω such that aR(ω) 6= 0, we have that aR(ω)algvol(σω) > 0.
Choose such an ω such that the coefficient aR(ω) 6= 0 for each x ∈ M . Define αω(x) similar
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to as before, counting the positive and negative oriented points landing on x:

αω(x) = |{t ∈ Int(∆n) : σω(t) = x, dtσω > 0}| − |{t ∈ Int(∆n) : σω(t) = x, dtσω < 0}|.
(4.21)

The algebraic volume is computed by integrating αω(x) over M with respect to the volume
form dv(x), algvol(σω) =

∫
M αω(x)dv(x). Therefore, it must be sufficient to verify that

aR(ω)αω(x) ≥ 0.
Suppose that a+

R(ω) 6= 0 and αω(x) 6= 0. Then αω(x) > 0 since volume is positive.
Take a lift π : x̃ 7→ x and lift σω using this basepoint to some σ̃ω a simplex in Hn. σ̃ω is
expressed as some σ(γ0(u), . . . , γn(u)) for [γ0, . . . , γn] representing ω. Since by assumption
a+

R is non-zero, there must be a positively oriented simplex (u0, . . . , un) ∈ S+(R) such that
each ui ∈ γi(D). Therefore, the distance between ui and γi(u) must be within d, the di-
ameter of D. Since R > 2d by assumption, this forces σ(γ0(u), . . . , γn(u)) to be positively
oriented and then αω(x) > 0. The same argument shows that if a−

R is positive, then αω(x)
is negative and the two negatives cancel as desired.

This almost completes the proof. Since [M ] generates the top homology, the only verifi-
cation to show that zR is a non-zero multiple of it, since it was already demonstrated to be
a well-defined cycle. This follows if it is true that there is some aR(ω) that is non-zero, as
was assumed in the previous steps to show that it would be positive. Take some fully ori-
ented simplex of side-length R (V ′

0 , . . . , V
′

n) ∈ S(R). By definition, the orbits of Γ on D fill
up all of Hn. Therefore, there exist γ0, . . . , γn ∈ Γ such that V ′

i ∈ γ(D). Up to perturbing
the choice of V ′, (or equivalently perturbing the fundamental domain D), assume that all
these points are interior, that is V ′

i ∈ γ(Int(D)). From this, consider the measure m on all
such simplices of this form and this therefore cannot vanish,

m({(u0, . . . , un) ∈ S(R) : ui ∈ γi(D)}) 6= 0 (4.22)

so for any ω ∈ Ω, either a+
R(ω) 6= 0 or a−

R(ω) 6= 0, and therefore aR(ω) 6= 0, so this cycle
does not identically vanish, completing the proof.

We can now prove Theorem 4.3.4.

Proof of Theorem 4.3.4. Using zR, for any ε > 0, take some R > 2d large enough to apply
the results above. It was shown that sgn(aR(ω))algvol(σω) ≥ vn − ε whenever aR(ω) 6= 0.
Choose some k 6= 0 such that [zR] = k[M ], so 1

k
zR is homologous to [M ]. Therefore,

algvol(zr) = kVol(M), so k must be positive. This is represented as a cycle by replac-
ing each aR(ω) with aR(ω)

k
. This is still a straight cycle representing [M ] and has volume

sgn
(

aR(ω)
k

)
algvol(σω) ≥ vn − ε. Taking ε → 0 completes the reverse inequality.

The above discussion completes a major step in the proof of Mostow rigidity, to explic-
itly construct the link between geometry and topology. The Gromov norm is a purely
topological invariant, and this relationship to the volume shows that hyperbolic volume
too is a topological invariant.
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Corollary 4.3.12. Let f : M → N be a homotopy equivalence between two hyperbolic mani-
folds, then Vol(M) = Vol(N).

Corollary 4.3.13. Any map f : M → M must have degree 0 or ±1.

Proof. Any map of degree at least two forces ‖M‖ to be 0.

4.4 Gromov’s proof

The realization of this direct bridge between geometry and topology leads to a concise
proof of Mostow rigidity due to Gromov. Initially, it was only known at the time that the
ideal regular simplex obtained the maximal volume vn in dimension three, but now since
that has been proven in all dimensions, his proof extends to higher dimensions as well.

Gromov’s proof of Mostow rigidity. Consider the setup of a homotopy equivalence f :
M → N of two closed complete hyperbolic manifolds of dimension at least three. Let F
be the lift to the universal cover that extends to the sphere at infinity as detailed in the
previous proof of rigidity. The main claim to finish this proof is that F takes regular ideal
simplices to regular ideal simplices. The fact that allows this is not their symmetry, but
rather that these are the unique simplices of maximal volume vn.
Lemma 4.4.1. Let V0, . . . , Vn be the vertices of a positively oriented ideal regular simplex.
The points F (V0), . . . , F (Vn) form the vertices of a positively oriented ideal regular simplex.

While this statement is true in dimension two, it is trivial. That is because all ideal 2-
simplices are isometric, so this tells nothing about the structure of the map F . This lack
of rigidity of ideal 2-simplices is the precise failure where the proof breaks down in dimen-
sion two. Consider A,B,C any three points on S1

∞ the boundary of H2. The hyperplane
from B to C is a geodesic. Consider the half of S1

∞ not containing A. Any point along this
can be considered a reflection of A through BC, in that it will maintain the area. This
will not be the case in higher dimensions. Let (V0, . . . , Vn) be a regular ideal n-simplex.
There is a unique point V ′

0 such that (V0, . . . , Vn) and (V ′
0 , . . . , Vn) are both ideal regular

simplices that share a side of (V1, . . . , Vn).

Proof. Suppose for the sake of contradiction that the volume of the geodesic simplex τ
with vertices at τ = F (V0), . . . , F (Vn) has volume vn − ε. Assume that τ is positively
oriented, perhaps by permuting two vertices if needed. Consider open sets Ui around each
point Vi such that the volume of any simplex with vertices V ′

0 , . . . V
′

n such that V ′
i ∈ Ui has

volume at most vn − ε/2. Define a chain

cR =
∑
ω∈S

aR(ω)σω, S = {[γ0, . . . , γn] = ω ∈ Ω : γi(u) ∈ Ui} (4.23)

for u a choice of a fixed interior point of D.
Lemma 4.4.2. There are constants C1, C2 > 0 such that for R � 0 sufficiently large,
‖zR‖ = C1 and ‖cR‖ ≥ C2.
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Proof of Lemma 4.4.2. Let V R
0 , . . . , V

R
n be the fixed regular simplex of side-length R used

to define the orientations. These can be chosen such that V R
i → wi have well-defined limits

to the boundary. To do this, consider one R > 0 and let V R
i be symmetric around 0 in the

disk model Bn. Take all the geodesics that are radii going through 0 and V R
i and choose

each V R
i for all R to lie on these radii.

Once R is sufficiently large such that a+
R(ω)a−

R(ω) = 0 for all ω ∈ Ω, the Gromov norm
of ‖zR‖ can be computed as:

‖zR‖ =
∑
ω∈Ω

|aR(ω)‖

=
∑
ω∈Ω

a+
R(ω) + a−

R(ω)

=
∑

Ω3ω=[Id,γ1,...,γn]
m{(u0, . . . , un) ∈ S+(R) : ui ∈ γi(D), u0 ∈ D}

+
∑

Ω3ω=[Id,γ1,...,γn]
m{(u0, . . . , un) ∈ S−(R) : ui ∈ γi(D), u0 ∈ D}

=
∑

Ω3ω=[Id,γ1,...,γn]
m{(u0, . . . , un) ∈ S(R) : ui ∈ γi(D), u0 ∈ D}

=
∑

Ω3ω=[Id,γ1,...,γn]
µ{δ ∈ Isom(Hn) : δ(V R

0 ) ∈ D, δ(ui) ∈ γi(D)}

= µ

 ⋃
Ω3ω=[Id,γ1,...,γn]

{δ ∈ Isom(Hn) : δ(V R
0 ) ∈ D, δ(ui) ∈ γi(D)}


= µ{δ ∈ Isom(Hn) : δ(V R

0 ) ∈ D} = C1.

(4.24)

The fact that this is a constant is due to the right-invariance of µ allowed the specific
choice of representative for ω to be well-defined to sum over, and independent from choice
of V R the fixed initial orientation-defining simplex. The equalities, (as opposed to inequali-
ties), are due to R being sufficiently large.

For the second part, to bound the Gromov norm of cR, this can be directly computed as
well:

‖cR‖ =
∑

ω∈Ω,γi(u)∈Ui

µ{δ ∈ Isom(Hn) : δ(V R
i ) ∈ γi(D)} (4.25)

and from this we can bound the norm as

‖cR‖ ≥
∑

ω∈Ω,γi(D)⊂Ui

µ{δ ∈ Isom(Hn) : δ(V R
i ) ∈ γi(D)}

≥ µ

 ⋃
ω∈Ω,γi(D)⊂Ui

µ{δ ∈ Isom(Hn) : δ(V R
i ) ∈ γi(D)}


≥ µ{δ ∈ Isom(Hn) : δ(V R

i ) ∈ Ui, δ(u) ∈ D}

(4.26)

where on the last line, the fixed representative of ω = [Id, γ1, . . . , γn] was chosen. There
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were multiple possible choices of representative for ω, so it might be necessary to shrink
the Ui sets to U ′

i around each wi such that the closure U ′
i ⊂ Int(Ui). Define

M = {δ ∈ Isom(Hn) : δ(U ′
i) ⊂ Ui, δ(u) ∈ D}, (4.27)

which is a neighborhood of the identity and is essentially the continuous functions from
the closed Hn to itself with the compact-open topology. The topology as a Lie group is not
coarser than this, so it is still well-defined in the Lie group. Once R � 0 is sufficiently
large, the V R

i are close to wi by construction and lie in U ′
i , and so M ⊂ {δ ∈ Isom(Hn) :

δ(V R
i ) ∈ Ui, δ(u) ∈ D}, so C2 can be set to the measure of this set C2 = µ(M), completing

the proof.

Using this lemma, because f is a homotopy equivalence, it must take [M ] to ±[N ], so
‖M‖ = ‖N‖, which was realized after the proof of Theorem 4.3.4 to prove Corollary 4.3.12
to show that M and N have the same volume. Recalling that zR = k[M ], this states that
f∗(zR) = ±k[N ]. Let z′

R be the straightened representative of f ◦ zR. Recall that the
straightening map is performed by lifting to Hn and replacing a chain with the chain that
takes point t ∈ ∆n, (thought of as a convex combination of the vertices e0, . . . , en), to the
corresponding convex combination of the vertices in Hn and projecting down to the hyper-
bolic manifold. By definition, algvol(zR) = kVol(M), so then algvol(z′

R) = ±kVol(N).
Since both M and N have the same volume, this implies that the algebraic volume of zR

and z′
R differ by ±1.

From the previous work, for some coefficient aR(ω) 6= 0, the algebraic volume of the
simplex formed by (γ0(u), . . . , γn(u)) for ω = [γ0, . . . , γn] is at least vn − ε and ε → 0 as
R → ∞. Therefore, the algebraic volume of zR is bounded below by the Gromov norm of
zR times the infimum of all such simplices:

|algvol(zR)| ≥ ‖zR‖ inf{Vol(σ(γ0(u), . . . , γn(u))) : ω = [γ0, . . . , γn] ∈ Ω, aR(ω) 6= 0}.

The right side limits to α1vn as R → ∞.
Let VF (ω) be the volume of the geodesic simplex with vertices at F (γ0(u)), . . . , F (γn(u)).

To compute the same for z′
R, for F the lift to hyperbolic space as the universal cover, we

compute as

|algvol(z′
R)| =

∑
ω∈Ω

|aR(ω)|VF (ω)

=
∑

ω:∃iγi(u)6∈Ui

|aR(ω)|VF (ω) +
∑

ω:∀iγi(u)∈Ui

|aR(ω)|VF (ω)

≤ vn

 ∑
ω:∃iγi(u)6∈Ui

|aR(ω)|

+ (vn − ε)

 ∑
ω:∀iγi(u)∈Ui

|aR(ω)|


≤ vn(‖zR‖ − ‖cR‖) + (vn − ε)‖cR‖

≤ C1vn

(
1 − εC1

vn

C2

)
(4.28)
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where Ui are the open sets such that if ui ∈ Ui, the simplex spanned by the vertices ui has
volume at least vn −ε, and C1, C2 are the constants from Lemma 4.4.2. This last inequality
stated violates the fact that lim inf |algvol(z′

R)| ≥ C1vn, completing the proof that F takes
ideal simplices of maximal volume to ideal simplices of maximal volume.

To finish Gromov’s proof of Mostow rigidity, consider an isometry h such that F ◦ h|Sn−1
∞

is the identity on the boundary at infinity. It would then follow that h−1 is homotopic to
F and can therefore be used as the perturbation of f to an isometry. Let h be the isom-
etry that takes some ideal regular simplex V to itself. Because F fixes all ideal regular
simplices as shown above, take any side of V and reflect the vertex across it to another
regular ideal simplex. In dimension n ≥ 3, this is uniquely defined. Repeating this through
all ideal simplices formed in this manner defines F ◦ h to be the identity on a dense set of
the sphere at infinity and therefore everywhere.

4.5 Corollaries using the Gromov proof

Corollary 4.5.1. Let M1,M2 be Hn quotiented by Γ1 and Γ2 as specific subgroups of the
isometry group. For any φ : Γ1 → Γ2 an isomorphism, there is an isometry γ of Hn such
that γ ◦ g = φ(g) ◦ γ. In particular, γ induces an isometry f̃ between M1 and M2 that has
f̃∗ = φ.

Proof. This follows from the fact that M1 and M2 are Eilenberg-Maclane spaces, so there
does exist a continuous map that realizes any homomorphism between the fundamental
groups of M1 and M2. Classical Mostow rigidity finishes the proof.

Theorem 4.5.2. Let M and N be compact connected hyperbolic manifolds of dimension n
at least three. Suppose there is a map f : M → N such that Vol(M) = | deg(f)|Vol(N).
Then f is homotopic to a covering map that is a local isometry.

This theorem is not an obvious corollary, as the initial step of producing a lift F̃ to
Hn and extending it to the boundary is no longer continuous. It is, however, measurable,
which will be sufficient to proceed. This is proven in Chapter 6 of Thurston [Thu79] for
the case of dimension three, combining techniques of the geometry of simplices and some
ergodic theorems. The argument could be extended to all dimensions given the results of
Haagerup and Monkholm [HM81] that ideal regular simplices are the unique simplices of
maximal volume, which was not known to Gromov at the time.
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A
Maximal volume simplices

A.1 Regular ideal simplices have maximal volume

The maximal volume of a hyperbolic geodesic simplex is obtained uniquely by an ideal
regular simplex, as conjectured by Thurston and later proven in Haagerup and Munkholm
[HM81]. This theorem is clearly true in dimension two where all ideal triangles are regular.
In dimension three, the computation of an ideal tetrahedron is given by the sum Λ(α) +
Λ(β) + Λ(γ) for Λ the Lobachevsky function, and α + β + γ = π the dihedral angles of the
tetrahedron. The Lobachevksy function is defined as

Λ(θ) = −
∫ θ

0
log |2 sin u|du. (A.1)

An ideal regular simplex can be expressed in Hn as a regular Euclidean simplex in the
boundary and a point at infinity. The converse is true as well; given n points on the bound-
ary and a point at infinity (in the upper half-space model), the n-simplex formed by them
is regular if and only if the (n − 1)-simplex in Euclidean Rn−1 space is regular. Another
representation is to take a regular Euclidean simplex with vertices on the unit sphere and
then take the hyperbolic convex hull. This is not an if-and-only-if; an ideal simplex in Bn

is regular if the vertices form a regular Euclidean simplex. However, as seen by reflecting
one vertex through its opposite side, it is possible to get hyperbolic ideal regular simplices
whose vertices do not form an ideal Euclidean simplex. In dimension two, this is clear as
any three points on the unit circle work.
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Proposition A.1.1. There is a relatively tight bound on the ratio between two ideal regular
simplices of adjacent dimensions:

n− 1
n2 ≤ Vol(V0, . . . , Vn+1)

Vol(V0, . . . , Vn)
≤ 1
n
. (A.2)

The upper bound was already proven in Gromov’s proof of Mostow rigidity. Label σ[n]
as a regular Euclidean n-simplex with vertices on Sn−1

∞ , as the unit sphere. The notation
of τ [n] will refer to the hyperbolic simplex with these same vertices.

Define the map p : Bn → Kn, the Poincaré (disk) model to the projective model of
hyperbolic space:

p : Bn → Kn, p : x 7→ 2
1 + |x|2

x.

It is easy to work in the Klein model since the geodesics are straight lines. Note that p is
not a conformal map as angles are not preserved in the Klein model. The metric can be
computed in the Klein model as

gij = 1
1 − |x|2

δij + xixj

(1 − |x|2)2 ,

and its volume form is therefore

dV = 1
(1 − |x|2)n+1

2
dx1 · · · dxn.

This allows us to integrate over σ[n] = p(τ [n]), which in this model represents an ideal
regular hyperbolic simplex. The volume is therefore the standard integral using the above
volume form. Therefore, the volume of an ideal regular simplex is computed as

Vol(τ [n]) =
∫

p(τ [n])

dx

(1 − |x|2)n+1
2
. (A.3)

Lastly, recall the map h : Bn → Hn, the isometry between the Poincaré disk model and the
upper half space model

h : (x1, . . . , xn) 7→ 1
|(x1, . . . , xn−1, xn − 1)|2

(2x1, . . . , 2xn−1, 1 − |x|2)

which takes the point (0, . . . , 0, 1) to the point ∞. Using this can give another computa-
tion of the volume of the simplex τ [n] knowing the volume form on Hn is x−n

n dx1 . . . dxn.
Use an isometry to let V0 = (0, . . . , 0, 1), which maps to ∞ in Hn, and let the other ver-
tices V1, . . . , Vn be the vertices of a regular Euclidean simplex in Sn−2 ⊂ Rn−1

∞ the bound-
ary of the upper half-space model. The total n-simplex can be thought of as vertically
stacked (n − 1)-simplices. Consider the map ε taking the model (n − 1)-simplex formed by
V1, . . . , Vn in Kn to the regular Euclidean simplex in Sn−2 in Hn. The image h(τ [n]) \ {∞}
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can be thought of as ε(τ [n]) × [0,∞). This gives a formula for its volume, integrating over
this as:

Vol(τ [n]) =
∫

ε(τ [n])

∫ ∞
√

(1−ρ2)
x−n

n dxdρ = 1
n− 1

∫
ε(τ [n])

(1 − ρ2)
−1−n

2 dρ (A.4)

for ρ2 = x2
1 + · · ·x2

n−1 the radius function on the sphere at infinity Rn−1
∞ .

Proof of Proposition A.1.1. Let σ0[n] be any regular Euclidean simplex, and τ0[n] be the
corresponding hyperbolic simplex with the same vertices. Consider the following three inte-
grals whose combination directly implies the result:

(a)
∫

σ0[n]
1

(1−|x|2)
n+1

2
dx = Vol(τ0[n])

(b)
∫

σ0[n]
1

(1−|x|2)
n
2
dx = nVol(τ0[n+ 1])

(c)
∫

σ0[n]
1

(1−|x|2)
n−1

2
dx = n−1

n
Vol(τ0[n])

By the inequalities of the integrands, once the equalities stated are proven, it is implied
that

n− 1
n

Vol(τ0[n]) ≤ nVol(τ0[n+ 1]) ≤ Vol(τ0[n])

finishing the proof.
Up to the action of an isometry, we can assume that p(τ0[n]) is a regular Euclidean sim-

plex. The first integral in (a) is proven by the integral computation in Equation A.3 and
the second in (b) is similarly the computation from Equation A.4, because the fact that
τ0[n + 1] is regular implies that ε(τ0[n + 1]) is regular as well. To compute integral (c), it
is easier to work on the boundary using Stoke’s theorem. In this setting, the explicit varia-
tion is described by the divergence of a vector field:∫

σ0[n]
div V (x) dx =

∫
∂σ0[n]

V · n dS (A.5)

for dS the surface volume form on the boundary.
Applying the divergence theorem from Equation A.5 to the vector field V = x

(1−|x|2)
n−1

2

will demonstrate the result. Computing each partial derivative yields

∂Vi

∂xi

= (1 − |x|2)n−1
2 ) + (n− 1)xi(1 − |x|2)n−3

2 xi)
(1 − |x|2)n−1 = (1 − |x|2)− n−1

2 + (n− 1)x2
i (1 − |x|2)− n+1

2

(A.6)
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so the divergence is calculated as the sum over i of Equation A.6 giving

div V = n

(1 − |x|2)n−1
2

+ (n− 1) |x|2

(1 − |x|2)n+1
2

= n

(1 − |x|2)n−1
2

+ (n− 1)
(

1
(1 − |x|2)n+1

2
− 1 − |x|2

(1 − |x|2)n+1
2

)

= 1
(1 − |x|2)n−1

2
+ (n− 1) 1

(1 − |x|2)n+1
2
.

(A.7)

Labeling φn(α) =
∫

σ0[n](1 − |x|2)−α dx, the integral of the divergence computed above is
simply expressed as φn

(
n−1

2

)
+ (n− 1)φn

(
n+1

2

)
.

The boundary of σ0[n] consists of n+1 faces, each of which is a regular Euclidean (n−1)-
simplex. Label the face opposite to vertex i as ∂iσ0[n]. Each such boundary component
has its vertices in a sphere Sn−2 the Euclidean sphere in the hyperplane containing ∂iσ0[n]
and let ρn =

√
1 − n−2 be the radius of this sphere. In this component, (1 − |x|2) = ρ2

n − ρ2

where ρ is the distance from the center of the boundary component to the point x. Fur-
thermore, the dot product x · n is computed as 1

n
. This easily can be seen by the fact that

since n is normal to the boundary component, the component of x in the direction of n is
the same for all x in this component, so setting x = n = 1√

n
(1, . . . , 1, 0) for i = n + 1

computes this dot product at all points.

The right-hand side of Equation A.5 can be computed as

n+ 1
n

∫
∂0σ0[n]

(ρ2
n − ρ2)− n−1

2 dρ (A.8)

since each boundary component will have the same integral by the regularity assumption.
Furthermore, each boundary component is itself a regular simplex, so this integral can be
re-expressed in a lower dimension as

n+ 1
n

∫
σ0[n−1]

(ρ2
n−ρ2

n|x|2)− n−1
2 ρn−1

n dx = n+ 1
n

∫
σ0[n−1]

(1−|x|2)− n−1
2 dx = n+ 1

n
φn−1

(
n− 1

2

)
(A.9)

since the boundary component is the rescaled simplex of one dimension lower with scaling
term defined as ρn. Combining these results gives the inductive formula

φn

(
n− 1

2

)
+ (n− 1)φn

(
n+ 1

2

)
= n+ 1

2
φn−1

(
n− 1

2

)
. (A.10)

Using the equations of parts (a) and (b), and substituting in the volume of an ideal regu-
lar simplex, the equality in part (c) is proven by

φn

(
n+ 1

2

)
= Vol(τ0[n]), φn−1

(
n− 1

2

)
= (n− 1)Vol(τ0[n]) (A.11)
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which implies
φn

(
n− 1

2

)
= n− 1

n
Vol(τ0[n]), (A.12)

finishing the proof of part (c).

There is one final lemma which will nearly complete the proof that only ideal regular
simplices obtain the maximal volume of a simplex.

Lemma A.1.2. Let f : (0, 1] → R be a concave function. Let p be the center of mass of
σ[n] an arbitrary Euclidean simplex with vertices at V0, . . . , Vn ∈ Sn−1. Denote c = |p| the
norm of the center of mass. When the following (improper) integrals converge, they satisfy
the inequality

A := 1
Vol(σ[n])

∫
σ[n]

f(1 − |x|2) dx ≤ 1
Vol(σ0[n])

∫
σ0[n]

f((1 − c2)(1 − |x|2)) dx =: B. (A.13)

When f is strictly concave, (meaning its second derivative is strictly negative), then the
inequality is sharp if and only if σ[n] is regular.

Note that when σ[n] is regular, (1 − c2) = 1, so the integrands are the same up to an
isometry taking the vertices of σ0[n] to V0, . . . , Vn the vertices of σ[n].

Proof. Let ∆[n] be the standard simplex of points ∆[n] = {(t0, . . . , tn) : ti ≥ 0,∑ ti = 1}.
Consider the map (t0, . . . , tn) mapping to the convex combination ∑ tiVi, giving a homeo-
morphism ∆[n] → σ[n]. Let µ be the Lebesgue probability measure of ∆[n], and it there-
fore descends to a probability measure on σ[n]. This recomputes A as an integral over the
standard simplex as

A =
∫

∆[n]
f(1 − |

∑
tiVi|2)dµ

and since µ is the Euclidean measure, it is invariant under any isometries of Rn+1, notably
any permutation of the vertices. Therefore, A =

∫
∆[n] f(1 − |∑ tiVi|2)dµ =

∫
∆[n] f(1 −

|∑ tρ(i)Vi|2)dµ for ρ ∈ Sn+1 a permutation on (n + 1) vertices. We can take the average
over ρ iterating through all possible permutations, and using the concavity of f , this gives
the inequality

A ≤
∫

∆[n]
f

 1
(n+ 1)!

∑
ρ∈Sn+1

(
1 − |

∑
tρ(i)Vi|2

) dµ
To compute the integrand, the symmetry will be used to cancel out many terms or take

the sum to obtain c, the center of mass.

|
∑

i

tiVi|2 =
∑
i,j

tρ(i)rρ(j)〈Vi, Vj〉 =
∑
i 6=j

tρ(i)rρ(j)〈Vi, Vj〉 +
∑

t2i (A.14)
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and averaging over all of Sn+1 gives

1
(n+ 1)!

∑
ρ∈Sn+1

tρ(i)tρ(j) = 1
n(n+ 1)

∑
k 6=`

tkt` = 1
n(n+ 1)

(
1 −

∑
t2i
)
, i 6= j (A.15)

and lastly the sum over all inner products of Vi is∑
〈Vi, Vj〉 = |

∑
Vi|2 −

∑
|Vi|2 + n+ 1 = (n+ 1)2c2. (A.16)

Plugging these formulae into the previous inequality gives

A ≤
∫

∆[n]
f
(
n+ 1
n

(1 − c2)(1 −
∑

t2i )
)
dµ (A.17)

and if σ[n] is regular, then c = 0 and each permutation doesn’t affect any of the sums, so
the above is an equality. Taking Equation A.17 and substituting in g(x) = f((1−c2)x) and
setting σ[n] to σ0[n] yields

B =
∫

∆[n]
f
(
n+ 1
n

(1 − c2)(1 −
∑

t2i )
)
dµ (A.18)

showing the inequality A ≤ B as desired.
Suppose that A = B. As discussed, this clearly occurs when σ[n] is regular. In this case,

the inequality A.17 must be an equality as well. When f is strictly concave, this can only
occur when |∑ tρ(i)Vi|2 = |∑ tiVi|2 for each i and ρ. Plugging in particular values can
compute these terms. Letting t0 = t1 = 1

2 and all the rest 0, shows that |V1 +V2| = |Vi +Vj|
for all i 6= j. The parallelogram law states that |Vi −Vj|2 = 4−|Vi +Vj|2 and gives similarly
that |V1 − V2| = |Vi − Vj| for all i 6= j. This is exactly the statement that σ[n] is regular,
finishing the proof.

Theorem A.1.3. A hyperbolic n-simplex has maximal volume vn if and only if it is ideal
and regular.

Proof. This proof proceeds by induction. It is clearly true for dimensions two and three.
In dimension two, all ideal triangles are regular. In dimension three, the volume of ideal
simplices is computed with the Lobachevsky function Λ, which is maximized when it is
regular.

Define Kn = nVol(τ0[n+ 1])
Vol(τ [n])

. For τ [n + 1] an arbitrary ideal simplex, consider the func-

tion f(t) = t−
n
2 − Knt

− n+1
2 , which will be a function to plug into the results above. For

n ≥ 3, this function is indeed strictly concave on (0, 1] if and only if Kn ≥ n(n+2)
(n+1)(n+3) .

This now satisfies the assumptions to apply Lemma A.1.2 to f and the Euclidean simplex
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σ[n] = ε(τ [n+ 1]). Using Equations A.3 and A.4 for n+ 1, let τ [n] = p−1(σ[n]) to compute

nVol(τ [n+ 1]) −KnVol(τ [n]) ≤
∫

σ0[n]
f((1 − c2)(1 − |x|2)) dx

= (1 − c2)− n
2 nVol(τ0[n+ 1]) −Kn(1 − c2)− n+1

2 Vol(τ0[n])
≤ (1 − c2)− n

2 (nVol(τ0[n+ 1]) −KnVol(τ0[n]))
= 0.

(A.19)

The inductive hypothesis at this point states that Vol(τ [n]) ≤ Vol(τ0[n]) since the vol-
ume is maximized at a regular simplex. The previous computation A.19 therefore gives the
inequality

nVol(τ [n+ 1]) ≤ KnVol(τ0[n]) = nVol(τ0[n+ 1]) (A.20)
showing that the volume of τ0[n + 1] is maximal since τ [n + 1] was arbitrary. If the in-
equality in A.20 is sharp, then it is also an equality in Equation A.19. Lemma A.1.2 then
says that ε(τ [n + 1]) is Euclidean regular, and therefore τ [n + 1] is hyperbolically regular,
finishing the proof.
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B
Algebraic topology

B.1 Eilenberg-Maclane spaces

We prove an important theorem from algebraic topology that we used in the proof of Mostow
rigidity.

Proposition B.1.1. Let ρ : π → π′ be any group homomorphism. There exists a unique map
up to homotopy f ∈ [K(π, n), K(π′, n)] such that f∗ : πn(K(π, n)) → πn(K(π′, n)) is ρ.

Corollary B.1.2. For M and N hyperbolic manifolds with the same fundamental group π,
any automorphism ρ of π can be realized by a map f : M → N such that ρ = f∗ is the
induced map on π1(M) → π1(N).

Proof of Proposition B.1.1. If n = 0, then this is just a collection of discrete points in-
dexed by the groups and this is trivial. Firstly, the Eilenberg-Maclane spaces do exist.
The construction involved requires the Moore space M(π, n), which has reduced homol-
ogy trivial except in degree n where it is π, and the taking P nM(π, n), the nth-Postnikov
section which kills off all higher homotopy groups. The Moore space is the mapping cone
(or cofibration) of the map given by

∨
j∈J

Sn f−→
∨
i∈I

Sn

where f is the map on spheres given by a presentation of π as
⊕
j∈J

Ze′
j

f−→
⊕
i∈I

Zei → π
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via a free resolution. By the Hurewicz theorem, M(π, n) has trivial homotopy groups until
degree n, where it will agree with the homology group and be π. The nth-Postnikov sec-
tion kills off all higher homotopy groups and realizes the Eilenberg-Maclane space.

Let X = K(π, n) and Y = K(π′, n). For every f ∈ [X,Y ] we define a homomorphism
ρ : π → π′ by mapping f : X → Y to the unique homomorphism φ : π → π′ fitting into the
diagram:

π π′

πn(X) πn(Y )

i

φ

j

f∗

.

The construction of the Moore space and Postnikov sections gives rise to K(π, n) as a
CW complex. Let X(m) be the m-skeleton. The attaching maps to create the (m + 1)-
skeleton are given by the pushout square

∨
Sm ∨

Dm+1

X(m) X(m+1)

. (B.1)

Since the disk Dm+1 can be considered as the cone over its boundary Sm, the wedge has
the same property ∨Dm+1 ∼= C (∨Sm). This expresses X(m+1) as X(m) ∪ C (∨Sm) glued
along the attaching map. Consider now the map

Y X(m) → Y ∨Sm (B.2)

which will have homotopy fiber given by Y X(m+1) from above.

Taking the long exact sequence of homotopy groups of the above fibration yields the
exact sequence [∨

Sm+1, Y
]

→ [X(m1), Y ] → [X(m), Y ] →
[∨

Sm, Y
]
. (B.3)

Interpreting exactness when these are the π0 is as follows: Since the first term in sequence
B.3 is the fundamental group π1

(
Y ∨Sm

)
, it acts on maps X(m+1) → Y . Exactness means

that such maps are in the same orbit of π1
(
Y ∨Sm

)
if and only if they map to the same

element in [X(m), Y ].

Once m > n, this sequence degenerates since X and Y have no homotopy groups any-
more, so we deduce that

[X,Y ] → [X(n+1), Y ] = [M(π, n), Y ] (B.4)
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is a bijection, and for m = n this is exactly

0 → [M(π, n), Y ] → Hom

⊕
j∈J

Ze′
j, π

′

 → Hom
(⊕

i∈I

Zei, π
′
)
. (B.5)

The result follows by applying the Whitehead theorem stating that a weak equivalence in
the category of CW complexes is an actual homotopy equivalence.
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